Skip to main content
Log in

Fabrication of Ti-Al composite coatings by the mechanical alloying method

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The method of mechanical alloying (MA) allows one to fabricate sufficiently thick and dense composite coatings using short-time treatments at room temperature. The method is very simple and requires no special atmosphere. It was used to synthesize coatings of Ti-Al, Ti-Al-W-C, and Ti-Al-Si on the titanium surface. During the heating of Ti-Al composite coatings in a temperature range of 600–1000°C, Ti-Al intermetallic phases are formed on the titanium surface. In Ti-Al-Si coatings annealed at 900–1000°C, Ti-Al intermetallic and silicide phases are the basis of the coatings. The temperature ranges of phase and structural transformations in the coatings depend on the initial chemical composition. For the thermal stabilization of Ti-Al intermetallic phases, additions of alloying elements retarding diffusion in the Ti-Al system can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim, “Trends in the Development of γ TiAl Alloys,” in γ-Titanium Aluminides, Ed. Y.-W. Kim et al. (The Minerals, Metals and Materials Society, Warrendale, Pa., 1995), pp. 637–654.

    Google Scholar 

  2. F. Appel, M. Oehring, and R. Wagner, “Novel Design Concepts for γ-Base Titanium Aluminide Alloys,” Intermetallics 8, 1283–1312 (2000).

    Article  CAS  Google Scholar 

  3. A. Lasalmonie, “Intermetallics: Why is It so Difficult to Introduce Them in Gas Turbine Engines?,” Intermetallics 14, 1123–1129 (2006).

    Article  CAS  Google Scholar 

  4. C. Leyens, M. Peters, and W. A. Kaysser, “Intermetallic Ti-Al Coatings for Protection of Titanium Alloys: Oxidation and Mechanical Behavior,” Surf. Coat. Technol. 94–95, 34–40 (1997).

    Article  Google Scholar 

  5. J. Hampshire, P. J. Kelly, and D. G. Teer, “The Tribological Properties of Co-Deposited Aluminium-Titanium Alloy Coatings,” Thin Solid Films 447–448, 392–398 (2004).

    Article  Google Scholar 

  6. M. S. Chu and S. K. Wu, “Improvement in the Oxidation Resistance of α2-Ti3Al by Sputtering Al Film and Subsequent Interdiffusion Treatment,” Surf. Coat. Technol. 179, 257–264 (2004).

    Article  CAS  Google Scholar 

  7. D. K. Das and S. P. Trivedi, “Microstructure of Diffusion Aluminide Coatings on Ti-Base Alloy IMI-834 and Their Cyclic Oxidation Behaviour at 650 C,” Mater. Sci. Eng., A 367, 225–233 (2004).

    Article  Google Scholar 

  8. Z. Liu and G. Wang, “Improvement of Oxidation Resistance of γ-TiAl at 800 and 900°C in Air by TiAl2 Coatings,” Mater. Sci. Eng., A 397, 50–57 (2005).

    Article  Google Scholar 

  9. T. Matsubara, T. Shibutani, K. Uenishi, and K. F. Kobayashi, “Fabrication of a Thick Surface Layer of Al3Ti on Ti Substrate by Reactive-Pulsed Electric Current Sintering,” Intermetallics 8, 815–822 (2000).

    Article  CAS  Google Scholar 

  10. C. H. Koo and T. H. Yu, “Pack Cementation Coatings on Ti3Al-Nb Alloys to Modify the High-Temperature Oxidation Properties,” Surf. Coat. Technol. 126, 171–180 (2000).

    Article  CAS  Google Scholar 

  11. V. E. Oliker, V. L. Sirovatka, I. I. Timofeeva, et al., “Formation of Detonation Coatings Based on Titanium Aluminide Alloys and Aluminium Titanate Ceramic Sprayed from Mechanically Alloyed Powders Ti-Al,” Surf. Coat. Technol. 200, 3573–3581 (2006).

    Article  CAS  Google Scholar 

  12. Xiu-Bo Liua, and Hua-Ming Wanga, “Microstructure, Wear and High-Temperature Oxidation Resistance of Laser Clad Ti5Si3/TiSi Composite Coatings on γ-TiAl Intermetallic Alloy” Surf. Coat. Technol., 200, 4462–4470 (2006).

    Article  Google Scholar 

  13. D. Vojtečha, T. Kubatíka, M. Pavlíckováb, and J. Maixnerc, “Intermetallic Protective Coatings on Titanium,” Intermetallics 14, 1181–1186 (2006).

    Article  Google Scholar 

  14. C. Suryanarayana, “Mechanical Alloying and Milling,” Prog. Mater. Sci. 46, 1–184 (2001).

    Article  CAS  Google Scholar 

  15. J. Braun and M. Ellner, “Phase Equilibria Investigations on the Aluminum-Rich Part of the Binary System Ti-Al,” Metall. Trans. A 23, 1037–1047 (2001).

    Article  Google Scholar 

  16. M. Palm, L. C. Zhang, F. Stein, and G. Sauthoff, “Phases and Phase Equilibria in the Al-Rich Part of the Al-Ti System above 900°C,” Intermetallics 10, 523–540 (2002).

    Article  CAS  Google Scholar 

  17. H. C. Yl and A. Petric, “Effect of Heating Rate on the Combustion Synthesis of Ti-Al Intermetallic Compounds,” J. Mater. Sci. 27, 6797–6806 (1992).

    Article  Google Scholar 

  18. W. Y. Yang and C. Weatherly, “A Study of Combustion Synthesis of Ti-Al Intermetallic Compounds,” J. Mater. Sci. 31, 3707–3713 (1996).

    Article  CAS  Google Scholar 

  19. K. B. Povarova, O. A. Bannykh, I. V. Burov, et al., “Structure and Some Properties of Molten Alloys on Base of TiAl Doped with V, Nb, Ta, Hf, Zr,” Izv. Ross. Akad. Nauk, Met., No. 3, 31–41 (1998).

  20. Y. Mishin and Chr. Herzig, “Diffusion in the Ti-Al System,” Acta Mater., 48, 589–623 (2000).

    Article  CAS  Google Scholar 

  21. S. E. Romankov, W. Sha, E. Ermakov, and A. Mamaeva, “Characterization of Aluminized Layer Formation during Annealing of Ti Coated with an Al Film,” J. Alloys Compd. 420, 63–70 (2006).

    Article  CAS  Google Scholar 

  22. S. E. Romankov, W. Sha, E. Ermakov, and A. Mamaeva, “Characterization of Interdiffusion Growth of Aluminized Layer on Ti Alloys” J. Alloys Compd. 429, 143–155 (2007).

    Article  CAS  Google Scholar 

  23. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.E. Roman’kov, Zh.B. Sagdoldina, S.D. Kaloshkin, E.V. Kaevitser, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 106, No. 1, pp. 70–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman’kov, S.E., Sagdoldina, Z.B., Kaloshkin, S.D. et al. Fabrication of Ti-Al composite coatings by the mechanical alloying method. Phys. Metals Metallogr. 106, 67–75 (2008). https://doi.org/10.1134/S0031918X08070090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08070090

PACS numbers

Navigation