Skip to main content
Log in

Penetration of high-frequency electromagnetic field through bulk samples of La1−x Sr x MnO3 (0.33 ≤ x ≤ 0.60) manganites

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Penetration of radio-frequency electromagnetic field through bulk samples of La1−x Sr x MnO3 (0.33 ≤ x ≤ 0.60) manganites has been studied in the frequency range from 20 kHz to 30 MHz at temperatures from 300 to 400 K, which includes the temperature of the magnetic phase transition of some investigated compositions. It has been shown that, in spite of the differences in the static properties, the dynamic properties of the investigated compositions of these manganites are similar; the differences are mainly pronounced at frequencies higher than 1 MHz. In the ferromagnetic range, significant changes in the transmission coefficient have been observed for all compositions upon magnetization. The magnitudes of the initial dynamic magnetic permeability have been estimated. The changes in the transmission coefficient in the ferromagnetic region are mainly caused by changes in the dynamic magnetic permeability rather than by magnetoresistance. It is shown that in the paramagnetic temperature range the magnitude of the dynamic reversible permeability exceeds unity for all compositions, which supports the assumption on the retention of local magnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Nagaev, Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors (Imperial College Press UK, London, 2002).

    Google Scholar 

  2. J. Coey, M. Viret, and S. von Molnar, “Mixed-Valence Manganites,” Adv. Phys. 48(2), 167–293 (1999).

    Article  CAS  Google Scholar 

  3. C. Zener, “Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure,” Phys. Rev. 82, 403–405 (1951).

    Article  CAS  Google Scholar 

  4. E. Dagotto, Nanoscale Phase-Separation and Colossal Magnetoresistance (Springer, Berlin, 2002).

    Google Scholar 

  5. S. E. Lofland, P. H. Kim, P. Dahiroc, et al., “Microwave Surface Resistance of Colossal Magnetoresistance Manganites,” J. Phys.: Condens. Matter 9, 6697–6709 (1997).

    Article  CAS  Google Scholar 

  6. A. Schwartz, M. Scheffer, and S. M. Anlage, “Determination of the Magnetization Scaling Exponent for Single-Crystal La0.8Sr0.2MnO3 by Broadband Microwave Surface Impedance Measurements,” Phys. Rev. B: Condens. Matter Mater. Phys., 61(2), R870–R873 (2000).

    CAS  Google Scholar 

  7. S. E. Lofland, M. Dominguez, S. D. Tyagi, et al., “Surface Resistance of Thin Perovskite Films-High—Temperature Superconductors and Giant Magnetoresistance Manganites,” Thin Solid Films 288, 256–261 (1996).

    Article  CAS  Google Scholar 

  8. F. Owens, “Giant Magneto Radio Frequency Absorption in Magneto-Resistive Materials La0.7(Sr,Ca)0.3MnO3,” J. Appl. Phys. 82(6), 3054–3057 (1997).

    Article  CAS  Google Scholar 

  9. V. V. Ustinov, A. P. Nosov, A. B. Rinkevich, and V. G. Vasil’ev, “Electromagnetic Field Penetration through Lanthanum Manganites,” Zh. Eksp. Teor. Fiz. 128(3), 567–574 (2005) [J. Exp. Theor. Phys. 101 (3), 487–493. (2005)].

    Google Scholar 

  10. A. Rinkevich, A. Nosov, V. Vassiliev, and E. Vladimirova, “Penetration of Electromagnetic Field through the La-Er-Ba Manganite Far Above the Magnetic Phase Transition Temperature,” Eur. Phys. J. B 54(4), 415–418 9(2006).

    Article  CAS  Google Scholar 

  11. A. B. Rinkevich, A. P. Nosov, V. G. Vasil’ev, and E. V. Vladimirova, “Penetration of Radiofrequency Electromagnetic Field through Doped Lanthanum Manganites,” Fiz. Met. Metalloved. 98(5), 23–29 (2004) [Phys. Met. Metallogr. 98 (5), 462–468 (2004)].

    CAS  Google Scholar 

  12. Y. Moritomo, T. Akimoto, A. Nakamura, et al., “Antiferromagnetic Metallic State in the Heavily Doped Region of Perovskite Manganites,” Phys. Rev. B: Condens. Matter Mater. Phys., 58(9), 5544–5549 (1998).

    CAS  Google Scholar 

  13. J. M. D. Coey, “Powder Magnetoresistance,” J. Appl. Phys. 85, 5576–5581 (1999).

    Article  CAS  Google Scholar 

  14. A. P. Nosov, V. G. Vasil’ev, E. V. Vladimirova, and V. V. Ustinov, “Magnetoresistive Properties of Bulk Polycrystalline La0.75Sr0.25MnO3 Manganites,” Fiz. Met. Metalloved. 92(5), 59–65 (2001) [Phys. Met. Metallogr. 92 (5), 479–485 (2001)].

    CAS  Google Scholar 

  15. A. Urushibara, Y. Moritomo, T. Arima, et al., “Insulator-Metal Transition and Giant Magnetoresistance in La1−x SrxMnO3,” Phys. Rev. B: Condens. Matter 51(20), 14 103–14 109 (1995).

    CAS  Google Scholar 

  16. V. V. Ustinov, A. P. Nosov, A. B. Rinkevich, and V. G. Vasil’ev, “The Polarization of a Radio-Frequency Electromagnetic Field in Lanthanum Manganite,” Dokl. Akad. Nauk 380(2), 179–182 (2001) [Dokl. Phys. 46 (9), 615–618 (2001)].

    CAS  Google Scholar 

  17. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, et al., “Evidence for Magnetic Polarons in the Magnetoresistive Perovskites,” Nature 386, 256–259 (1997).

    Article  Google Scholar 

  18. C. P. Adams, J. W. Lynn, Y. M. Mukovskii, et al., “Charge Ordering and Polaron Formation in the Magnetoresistive Oxide La0.7Ca0.3MnO3,” Phys. Rev. Lett. 85(18), 3954–3957 (2000).

    Article  CAS  Google Scholar 

  19. K. H. Kim, M. Uehara, and S-W. Cheong, “High-Temperature Charge-Ordering Fluctuations in Manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(18), R11 945–R11 948 (2000).

    CAS  Google Scholar 

  20. G.M. Zhao, Y.S. Wang, D.J. Kang, et al., “Evidence for the Immobile Bipolaron Formation in the Paramagnetic State of the Magnetoresistive Manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(18), R11 949–R11 952 (2000).

    CAS  Google Scholar 

  21. C. S. Nelson, M. V. Zimmermann, Y. J. Kim, et al., “Correlated Polarons in Dissimilar Perovskite Manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 174 405 (2001).

    Google Scholar 

  22. L. Downward, F. Bridges, S. Bushart, et al., “Universal Relationship between Magnetization and Changes in the Local Structure of La1−x CaxMnO3: Evidence for Magnetic Dimers,” Phys. Rev. Lett. 95, 106 401 (2005).

    Google Scholar 

  23. M. B. Salamon, P. Lin, and S. H. Chun, “Colossal Magnetoresistance is a Griffiths Singularity,” Phys. Rev. Lett. 88, 197203 (2002).

    Google Scholar 

  24. M. B. Salamon and S. H. Chun, “Griffiths Singularities and Mangetoresistive Manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 014 411 (2003).

  25. J. Burgy, M. Mayr, V. Martin-Mayor, et al., “Colossal Effects in Transition Metal Oxides Caused by Intrinsic Inhomogeneities,” Phys. Rev. Lett. 87, 277 202 (2001).

    Google Scholar 

  26. J. Burgy, A. Moreo, and E. Dagotto, “Relevance of Cooperative Lattice Effects and Stress Fields in Phase-Separation Theories for CMR Manganites,” Phys. Rev. Lett. 92, 097 202 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Nosov, A.B. Rinkevich, V.G. Vasil’ev, E.V. Vladimirova, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 106, No. 1, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosov, A.P., Rinkevich, A.B., Vasil’ev, V.G. et al. Penetration of high-frequency electromagnetic field through bulk samples of La1−x Sr x MnO3 (0.33 ≤ x ≤ 0.60) manganites. Phys. Metals Metallogr. 106, 34–42 (2008). https://doi.org/10.1134/S0031918X08070053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08070053

PACS numbers

Navigation