Skip to main content
Log in

Use of mechanoactivation for obtaining hydrides of titanium aluminides

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The hydrogen storage capacity of titanium aluminides Ti(Al,Nb) (β0) and Ti3 (Al,Nb) (α2) subjected to mechanoactivation has been investigated. It has been found that the mechanoactivation in a hydrogen atmosphere makes it possible to obtain hydrides of titanium aluminides with a hydrogen concentration of up to 1.8 wt % at room temperature without enhanced requirements for purity and pressure of the supplied hydrogen. The release of hydrogen from such samples in a vacuum begins at a temperature of about 175°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen in Metals, Ed by G. Alefeld, J. Volkl (Springer, New York, 1978, Mir, Moscow, 1981), Vols. 1–2.

    Google Scholar 

  2. K. M. Semenenko, V. V. Burnasheva, and V. N. Verbetskii, “Interaction of Hydrogen with Intermetallic Compounds,” Dokl. Akad. Nauk SSSR 270(6), 1404–1413 (1983).

    CAS  Google Scholar 

  3. K. N. Semenenko, V. A. Yartys’, and V. V. Burnasheva, “Crystal Lattice Deformation and Relation of Intermetallic Compounds to Hydrogen,” Dokl. Akad. Nauk SSSR 245(5), 1127–1135 (1979).

    CAS  Google Scholar 

  4. V. V. Burnasheva and K. N. Semenenko, “Interaction of Hydrogen with Intermetallic Compounds,” Zh. Obshch. Khim. 58(9), 1931 (1986).

    Google Scholar 

  5. D. G. Westlake, “Site Occupancies and Stoichiometries in Hydrides of Intermetallic Compounds: Geometric Considerations,” J. Less-Common Met. 90, 251–273 (1983).

    Article  CAS  Google Scholar 

  6. Yu. R. Kolobov, R. Z. Valiev, I. P. Grabovitskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  7. I. G. Konstanchuk, E. Yu. Ivanov, and V. V. Boldyrev, “Interaction of Hydrogen with Alloys and Intermetallic Compounds Obtained by Mechanochemical Methods,” Usp. Khim. 67(1), 75–86 (1998) [Russ. Chem. Rev. 67 (1), 69–79 (1998)].

    CAS  Google Scholar 

  8. E-MRS Spring Meeting 2003, Strasbourg, France, June 10–13, 2003, Symposium C, “Nanoscale Materials for Energy Storage”. http://www.e-mrs.org/.

  9. S. Orimo and H. Fujii, “Materials Science of Mg-Ni-Based New Hydrides,” Appl. Phys. A 72, 167–186 (2001).

    Article  CAS  Google Scholar 

  10. Y. Chen and J. S. Williams, “Formation of Metal Hydrides by Mechanical Alloying,” J. Alloys Compd. 217, 181–184 (1995).

    Article  CAS  Google Scholar 

  11. A. Ye. Yermakov, N. V. Mushnikov, M. A. Uimin, et al., “Hydrogen Reaction Kinetics of Mg-Based Alloys Synthesized by Mechanical Milling,” J. Alloys Compd. 425, 367–372 (2006).

    Article  CAS  Google Scholar 

  12. N. V. Mushnikov, A. E. Ermakov, M. A. Uimin, et al., “Kinetics of Interaction of Mg-Based Mechanically Activated Alloys with Hydrogen,” Fiz. Met. Metalloved. 102(4), 448–459 (2006) [Phys. Met. Metallogr. 102 (4), 421–431 (2006)].

    CAS  Google Scholar 

  13. L. T. Zhang, K. Ito, H. Inui, et al., “Hydrogen Absorption and Desorption in B 2 Single Phase Ti-22Al-27Nb Alloy before and after Deformation,” Acta Metal. Mater. 49, 751–758 (2001).

    CAS  Google Scholar 

  14. L. T. Zhang, K. Ito, H. Inui, et al., “Multiphase and Microstructure Effects on the Hydrogen Absorption/ Desorption Behavior of a Ti-22Al-27Nb Alloy,” Acta Metal. Mater. 49, 963–972 (2001).

    Google Scholar 

  15. K. Hashi, K. Ishikawa, K. Suzuki, and K. Ito, “Hydrogen Absorption and Desorption in the Binary Ti-Al System,” J. Alloys Compd. 330–332, 547–550 (2002).

    Article  Google Scholar 

  16. L. T. Zhang, K. Ito, H. Inui, et al., “Reversible Hydrogen Absorption/Desorption and Related Phase Transformations in a Ti3 Al Alloy with the Stoichiometry Composition,” Acta Metal. Mater. 50, 4901–4912 (2002).

    Google Scholar 

  17. K. Ishikawa, K. Hashi, K. Suzuki, and K. Aoki, “Effect of Substitutional Elements on the Hydrogen Absorption-Desorption Properties of Ti3Al Compounds,” J. Alloys Compd. 314, 257–261 (2001).

    Article  CAS  Google Scholar 

  18. L. T. Zang, K. Ito, H. Inui, et al., “Microstructure with Martensitic Features Induced by Absorption of a Large Amount of Hydrogen in B2 Single-Phase Ti-22Al-27Nb Alloy,” Acta Metal. Mater. 51, 781–788 (2003).

    Google Scholar 

  19. R. N. Eshchenko, O. A. Elkina, Yu. S. Bersenev, and V. P. Pilyugin, “Effect of Deuterium on the Phase Formation in the Ti3Al Intermetallic Compound,” Fiz. Met. Metalloved. 100(2), 42–50 (2005) [Phys. Met. Metallogr. 100 (2), 134–141 (2005)].

    CAS  Google Scholar 

  20. J. Huot, M.-L. Tremblay, and R. Schulz, “Synthesis of Nanocrystalline Hydrogen Storage Materials,” J. Alloys Compd. 356–357, 603–607 (2003).

    Article  CAS  Google Scholar 

  21. R. A. Varin and T. Czujko, “The Effect of Atomic Volume on the Hydrogen Storage Capacity of Hexagonal Metals/Intermetallics,” Scr. Mater. 46, 531–535 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Kazantseva, N.V. Mushnikov, A.G. Popov, V.A. Sazonova, P.B. Terent’ev, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 105, No. 5, pp. 492–502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantseva, N.V., Mushnikov, N.V., Popov, A.G. et al. Use of mechanoactivation for obtaining hydrides of titanium aluminides. Phys. Metals Metallogr. 105, 460–470 (2008). https://doi.org/10.1134/S0031918X08050062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08050062

PACS numbers

Navigation