Skip to main content
Log in

Kinetics and the mechanism of the realization of the reverse α-γ transformation in metastable Fe-Ni-Ti alloys: I. Dilatometric, X-ray diffraction, magnetometric, and metallographic investigations of the reverse transformation

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Kinetics of the development of the reverse α → γ transformation has been studied in detail by various methods. It has been established that in the middle part of the temperature interval of the reverse α-γ transformation the rate of the development of transformation is maximum, which indicates its athermal nature. Both in the beginning and at the completing stage of the development, the α-γ transformation is realized according to the isothermal kinetics. An assumption is made that it is precisely the difference in the kinetics that is critical for the observed anomalous behavior of the physical characteristics of the alloy discussed in the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Zemtsova, M. M. Vasilevskaya, and K. A. Malyshev, “Aging of Fe-Ni-Ti Alloys during the Reverse α-γ Martensitic Transformation,” Fiz. Met. Metalloved. 24(2), 293–298 (1967).

    CAS  Google Scholar 

  2. V. I. Zel’dovich and N. Yu. Frolova, “Effect of the Rate of Heating on the Process of Austenite Formation and Recrystallization of a Maraging Steel,” Fiz. Met. Metalloved., No. 2, 178–185 (1990).

  3. V. V. Sagaradze, K. A. Malyshev, V. M. Schastlivtsev, et al., “Effect of the Rate of Heating on the Reverse Martensitic Transformation in the Alloy of Iron with 31.5% Nickel,” Fiz. Met. Metalloved. 39, 1239–1250 (1975).

    CAS  Google Scholar 

  4. A. F. Edneral, V. M. Kardonskii, and M. D. Perkas, “Structural Changes upon Aging of Martensite of Fe-Ni-Ti Alloy,” Fiz. Met. Metalloved. 24(4), 669–676 (1967).

    CAS  Google Scholar 

  5. N. D. Zemtsova and K. A. Malyshev, “Continuous Decomposition of the γ Solid Solution in Iron-Nickel-Titanium Alloys,” Fiz. Met. Metalloved. 35(5), 1006–1014 (1973).

    CAS  Google Scholar 

  6. V. I. Zel’dovich, N. Yu. Frolova, and O. S. Rinkevich, “The Formation of Austenite in a Fe-Ni-Ti Alloy Pre-Stress-Aged in a Martensite State,” Fiz. Met. Metalloved. 74(1), 138–144 (1992) [Phys. Met. Metallogr. 74, 62–66 (1992)].

    Google Scholar 

  7. H. Kessler and W. Pitsch, “Verlauf der Martensit-Austenit-Rückumwandlung in einer Fe-Ni-Legierung mit 32.5 Gew.-% Ni bei schnellem Aufheizen,” Arch. Eisenhuttenw. 38(6), 469–473 (1967).

    CAS  Google Scholar 

  8. V. D. Sadovskii, L. V. Smirnov, V. M. Schastlivtsev, et al., “Effect of Martensite Morphology on the Reverse Transformation in 25N31 Alloy,” Fiz. Met. Metalloved. 67(1), 129–136 (1989).

    CAS  Google Scholar 

  9. V. I. Zel’dovich and V. D. Sadovskii, “Redistribution of Components between α and γ Phases at the α-γ Transformation in Iron-Nickel Alloys,” Fiz. Met. Metalloved. 28(4), 715–722 (1969).

    CAS  Google Scholar 

  10. E. Hornbogen, “Combined Reactions,” Metall. Trans. A 10A, 947–972 (1979).

    CAS  Google Scholar 

  11. N. D. Zemtsova and E. I. Starchenko, “The Possibility of the Development of Cellular Decomposition under Conditions of Low-Angle Grain-Boundary Migration,” Fiz. Met. Metalloved. 50(3), 655–659 (1980).

    CAS  Google Scholar 

  12. H. Kessler and W. Pitsch, “Die Kristallographischen Eigenschaften des im Martensit bei schnellem Aufheizen Rückumgewandelten Austenits in einer Fe-Ni-Legierung mit 32.5 Gew.-% Ni,” Arch. Eisenhüttenw. 38(4), 321–328 (1967).

    CAS  Google Scholar 

  13. H. Kessler and W. Pitsch, “Die Martensit-Austenit-Rückumwandlung in einer Eisen-Nikel-Legierung mit 32.5 % Ni bei Langsamen Aufheizen,” Arch. Eisenhüttenw. 39(3), 223–231 (1968).

    CAS  Google Scholar 

  14. V. V. Sagaradze, Yu. A. Vaseva, and K. A. Malyshev, “Isothermal Shear α-γ Transformation in Fe-Ni-Ti Alloy,” Fiz. Met. Metalloved. 37(3), 590–598 (1974).

    CAS  Google Scholar 

  15. V. I. Zel’dovich and I. P. Sorokin, “On the Dilatometric Effect in Grain-Oriented Iron-Nickel Alloy upon α-γ Transformation,” Fiz. Met. Metalloved. 21(2), 223–227 (1966).

    Google Scholar 

  16. N. D. Zemtsova and K. A. Malyshev, “Effect of Transformation-Induced Strain-Hardening and Recrystallization of Austenite on Development of Discontinuous Decomposition in Fe-Ni-Ti Alloys,” Fiz. Met. Metalloved. 48(2), 375–381 (1979).

    CAS  Google Scholar 

  17. N. D. Zemtsova and E. I. Starchenko, “Structure Mechanism of Decomposition of Austenitic Iron-Nickel-Titanium Alloys Strengthened via Transformation-Induced Strain Hardening,” Fiz. Met. Metalloved. 52(4), 838–848 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.D. Zemtsova, E.I. Anufrieva, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 104, No. 6, pp. 594–604.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemtsova, N.D., Anufrieva, E.I. Kinetics and the mechanism of the realization of the reverse α-γ transformation in metastable Fe-Ni-Ti alloys: I. Dilatometric, X-ray diffraction, magnetometric, and metallographic investigations of the reverse transformation. Phys. Metals Metallogr. 104, 571–581 (2007). https://doi.org/10.1134/S0031918X07120058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07120058

PACS numbers

Navigation