Skip to main content
Log in

Thermodynamic simulation of the kovar and invar behavior of ferromagnets

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In terms of the theory of second-order phase transitions with allowance for the magnetophonon interaction of the magnetic subsystem with the crystal lattice of the ferromagnet, an approach has been developed which makes it possible to give a consistent thermodynamic description of the mechanism of formation of invar and kovar effects. It is shown that the invar and kovar behavior is observed for magnets with a definite relationship of the thermodynamic parameters that characterize the ferromagnetic phase. The thermodynamic consideration is illustrated by model calculations. Ways for an experimental verification of the thermodynamic conclusions of the theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Belov, Magnetic Transformations (GIFML, Moscow, 1959) [in Russian].

    Google Scholar 

  2. G. A. Alers, J. R. Neighbours, and H. Sato, “Temperature Dependent Magnetic Contribution to the High Field Elastic Constants of Nickel and an Fe-Ni Alloy,” J. Phys. Chem. Solids 13(1), 40–55 (1960).

    Article  CAS  Google Scholar 

  3. G. I. Kataev and Z. D. Sitota, “Young’s Modulus and Internal Friction Anomalies in Fe3Pt Alloy,” Zh. Eksp. Teor. Fiz. 38(4), 1037–1041 (1960).

    CAS  Google Scholar 

  4. E. Pytte, “Spin-Phonon Interactions in a Heisenberg Ferromagnet,” Ann. Phys.(Paris) 32(3), 377–403 (1965).

    Article  Google Scholar 

  5. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967; Nauka, Moscow, 2nd ed., 1975).

    Google Scholar 

  6. V. G. Vaks, A. I. Larkin, and S. A. Pikin, “Thermodynamics of Ideal Ferromagnets,” Zh. Eksp. Teor. Fiz. 53(1(7)), 281–289 (1967).

    CAS  Google Scholar 

  7. H. M. Ledbetter and R. P. Reed, “Elastic Properties of Metals and Alloys. I. Iron, Nickel and Iron-Nickel Alloys,” J. Phys. Chem. Ref. Data 2(3), 531–617 (1973).

    Article  CAS  Google Scholar 

  8. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  9. G. Hausch, “Elastic Constants of FePt Alloys. I. Single Crystalline Elastic Constants of Fe72Pt28,” J. Phys. Soc. Jpn. 37(3), 819–823 (1974).

    Article  CAS  Google Scholar 

  10. G. Hausch, “Elastic Constants of FePt Alloys. II. Young’s Modulus of FePt (25–29 at. % Pt),” J. Phys. Soc. Jpn. 37(3), 824–827 (1974).

    Article  CAS  Google Scholar 

  11. Physics and Applications of Invar Alloys (Maruzen, Tokyo, 1978).

  12. M. Shimizu, “Forced Magnetostriction, Magnetic Contributions to Bulk Modulus and Thermal Expansion and Pressure Dependence of Curie Temperature in Iron, Cobalt and Nickel,” J. Phys. Soc. Jpn. 44(3), 792–800 (1978).

    Article  CAS  Google Scholar 

  13. Y. Endoh and Y. Noda, “Zero Sound Anomaly in a Ferromagnetic Invar Alloy Fe65Ni35,” J. Phys. Soc. Jpn. 46(3), 806–814 (1979).

    Article  CAS  Google Scholar 

  14. M. Shimizu, “Magnetovolume Effects in Itinerant Electron Ferromagnets,” J. Magn. Magn. Mater. 20(1), 47–55 (1980).

    Article  CAS  Google Scholar 

  15. E. Z. Valiev, “Properties of Ferromagnets with Strong Magnetoelastic Interaction and Invar Anomalies,” Fiz. Met. Metalloved. 49(5), 988–993 (1980).

    CAS  Google Scholar 

  16. M. Shiga, “Magnetovolume Effects in Ferromagnetic Transition Metlas,” J. Phys. Soc. Jpn. 50(2), 2573–2580 (1981).

    Article  CAS  Google Scholar 

  17. R. A. MacDonald and W. M. MacDonald, “Thermodynamic Properties of FCC Metals at High Temperatures,” Phys. Rev. B: Condens. Matter 24(4), 1715–1724 (1981).

    CAS  Google Scholar 

  18. M. Shimizu, “Itinerant Electron Magnetism,” Rep. Prog. Phys. 44(4), 329–409 (1981).

    Article  Google Scholar 

  19. G. Oomi and N. Mori, “High Pressure X-ray Study of Anomalous Bulk Modulus of an Fe70Ni30 Invar Alloy,” J. Phys. Soc. Jpn. 50(4), 1043–1044 (1981).

    Article  CAS  Google Scholar 

  20. G. Oomi and N. Mori, “Bulk Modulus Anomalies of FeNi and FePt Invar Alloy,” J. Phys. Soc. Jpn. 50(9), 2917–2923 (1981).

    Article  CAS  Google Scholar 

  21. G. Oomi and N. Mori, “Pressure Effect on the Spontaneous Volume Magnetostriction of FeNi and FePt Invar Alloy,” J. Phys. Soc. Jpn. 50(9), 2924–2930 (1981).

    Article  CAS  Google Scholar 

  22. D. J. Kim, “Electron-Phonon Interactions and Itinerant-Electron Ferromagnetism,” Phys. Rev. B: Condens. Matter 25(11), 6919–6938 (1982).

    CAS  Google Scholar 

  23. Precision Alloys: A Handbook, Ed. by B. V. Molotilov (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  24. E. Z. Valiev and A. Z. Menshikov, “Linear and Nonlinear Magnetoelastic Interactions in the Molecular Field Theory and Invar Anomalies,” J. Magn. Magn. Mater. 46(1), 199–206 (1984).

    Article  CAS  Google Scholar 

  25. A. V. Deryabin, V. K. Kazantsev, and B. N. Shvetsov, “On Explanation of Elasticity and Thermal Expansion Invar Anomaly,” J. Magn. Magn. Mater. 51(1), 98–102 (1985).

    Article  CAS  Google Scholar 

  26. A. I. Zakharov, Physics of Precision Alloys with Special Thermal Properties (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  27. V. M. Zverev and V. P. Silin, “On the Fluctuation-Phonon Approach in the Theory of Magnetism,” Zh. Eksp. Teor. Fiz. 93(2(8)), 709–722 (1987).

    Google Scholar 

  28. E. Z. Valiev, “Effective Anharmonicity and ΔE Effect of Invar Elastic Subsystem,” Fiz. Met. Metalloved. 65(2), 224–229 (1988).

    CAS  Google Scholar 

  29. S. M. Podgornykh and A. K. Zatoplyaev, “Nicikel Volume Magnetostriction: Two Magnetic Contributions in Thermal Expansion Coefficient,” Fiz. Met. Metalloved., No. 12, 153–155 (1990).

  30. E. Z. Valiev, “Phenomenological Theory of Magnetoelastic Interaction in Invars and Elinvars,” Usp. Fiz. Nauk 161(8), 87–128 (1991).

    CAS  Google Scholar 

  31. A Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  32. V. M. Zverev and V. P. Silin, “Magnetoelasticity and Effect of Thermal Phonons on the Magnetic Properties of Ferromagnets,” Pis’ma Zh. Eksp. Teor. Fiz. 64(1), 33–37 (1996).

    CAS  Google Scholar 

  33. D. Wagner, A. Yu. Romanov, and V. P. Silin, “Magnetic Properties of Inhomogeneous Ferromagnets,” Zh. Eksp. Teor. Fiz. 109(5), 1753–1764 (1996).

    Google Scholar 

  34. V. M. Zverev, “Isotopic Effect in Ferromagnets,” Zh. Eksp. Teor. Fiz. 112(5(11)), 1863–1872 (1997).

    CAS  Google Scholar 

  35. A. Yu. Romanov and V. P. Silin, “Magnetostriction of Invar Alloys,” Zh. Eksp. Teor. Fiz. 113(1), 213–227 (1998).

    CAS  Google Scholar 

  36. A. Z. Solontsov, A. N. Vasil’ev, and D. D. Vagner, “Spin Fluctuations in Metals and the Invar Problem,” Fiz. Met. Metalloved. 90(2), 25–34 (2000) [Phys. Met. Metallogr. 90 (2), 113–122 (2000)].

    CAS  Google Scholar 

  37. V. Yu. Bodryakov and A. A. Povzner, “Thermodynamic Grounds for the Invar and Elinvar Effects in Ferromagnets,” Zh. Tekh. Fiz. 74(2), 66–72 (2004) [Tech. Phys. 49 (2), 207–213 (2004)].

    Google Scholar 

  38. V. Yu. Bodryakov, “Complex Study of Effects of the Lattice and Magnetic Anharmonicity on the Thermodynamic Properties of Solids,” Doctoral Dissertation in Mathematics and Physics (UGTU-UPI, Ekaterinburg, 2005).

    Google Scholar 

  39. V. Yu. Boryadkov and A. A. Povzner, “Invar and Covar Behavior of Simple Ferromagnets: Thermodynamic Simulation,” Zh. Tekh. Fiz. 77(2), 65–71 (2007) [Tech. Phys. 52 (2), 209–215 (2007)].

    Google Scholar 

  40. V. Yu. Bodryakov, A. A. Povzner, and I. V. Safonov, “On the Dependence of the Ferromagnetic Debye Temperature on Magnetic Field,” Teplofiz. Vys. Temp. 43(3), 396–400 (2006).

    Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Nauka, Moscow, 1976); Pergamon Press, Oxford, 1980); 4th ed. (Nauka, Moscow, 1995).

    Google Scholar 

  42. G. A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill, New York, 1968; Nauka, Moscow, 1970).

    Google Scholar 

  43. L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Bodryakov, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 104, No. 1, pp. 22–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodryakov, V.Y. Thermodynamic simulation of the kovar and invar behavior of ferromagnets. Phys. Metals Metallogr. 104, 19–28 (2007). https://doi.org/10.1134/S0031918X07070046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07070046

PACS numbers

Navigation