Skip to main content
Log in

Changes in the potential energy upon the formation of vacancies in the volume and in the cores of crystallite-conjugation regions in cubic polycrystalline metals

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Changes in the potential energy of atoms that constitute the nearest neighborhood of vacancies formed in the bulk of d transition and precious cubic metals have been determined. These changes agree with the available first-principles calculations of changes in the potential energy of atoms of the nearest neighborhood of vacancies. In the cores of crystallite-conjugation regions (CCRs) of bcc polycrystalline d transition metals, the formation of vacancies is accompanied by positive changes in the potential energy of atoms of their nearest neighborhood. The absolute magnitudes of these changes are several times less than the changes in the potential energy of atoms of the nearest neighborhood of vacancies in the bulk of these metals, in accordance with the relationship between the enthalpies of formation of vacancies in these regions of polycrystals. The changes in the potential energy of atoms of the nearest neighborhood of vacancies formed in the cores of CCRs of fcc polycrystalline metals are negative because of the split structure of vacancies in the CCR cores of such metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, “Nanostructural Materials: Basic Concepts,” Acta Mater. 48(1), 1–29 (2000).

    Article  CAS  Google Scholar 

  2. R. W. Siegel, “Vacancy Concentrations in Metals,” J. Nucl. Mater. 69–70, 117–146 (1978).

    Article  Google Scholar 

  3. H.-E. Schaefer, “Investigation of Thermal Equilibrium Vacancies in Metals by Positron Annihilation,” Phys. Status Solidi A 102, 47–64 (1987).

    Article  CAS  Google Scholar 

  4. Q. Wei, H. T. Zhang, B. E. Schuster, et al., “Microsructure and Mechanical Properties of Super-Strong Nanocrystalline Tungsten Processed by High-Pressure Torsion,” Acta Mater. 54, 4079–4089 (2006).

    Article  CAS  Google Scholar 

  5. S. M. Klotsman, “Impurity States and Diffusion in Metal Grain Boundaries,” Usp. Fiz. Nauk. 160(1), 99–139 (1990).

    CAS  Google Scholar 

  6. S. M. Klotsman, M. I. Kurkin, V. N. Kaigorodov, et al., “Intercrystalline Diffusion of Cobalt in Polycrystalline Tungsten: I. Theory of Diffusion of Substitutional Atomic Probes in the Core of Crystallite-Conjugation Regions and Adjacent Zones,” Fiz. Met. Metalloved. 85(2), 31–38 (1998) [Phys. Met. Metallogr. 85 (2), 135–139 (1998)].

    CAS  Google Scholar 

  7. S. M. Klotsman, A. N. Timofeev, S. A. Matveev, et al., “Crystallite-Conjugation Regions and Adjacent Lattice Regions in Polycrystalline Iridium: I. Composition and Properties of Adjacent Lattice Regions Formed in Polycrystalline Iridium during Annealing in an Ultrahigh Vacuum,” Fiz. Met. Metalloved. 102(3), 330–339 (2006) [Phys. Met. Metallogr. 102 (3), 309–317 (2006)].

    CAS  Google Scholar 

  8. S. M. Klotsman, A. N. Timofeev, S. A. Matveev, et al., “Crystallite-Conjugation Regions and Adjacent Lattice Regions in Polycrystalline Iridium: II. Composition and Properties of Cores of Crystallite-Conjugation Regions in Polycrystalline Iridium during Annealing in an Ultrahigh Vacuum,” Fiz. Met. Metalloved. 102(4), 329–335 (2006) [Phys. Met. Metallogr. 102 (4), 376–383 (2006)].

    Google Scholar 

  9. S. M. Klotsman, A. N. Timofeev, M. S. Dudarev, et al., “Crystallite-Conjugation Regions and Adjacent Lattice Regions in Polycrystalline Iridium: III. Enthalpies of Formation of Vacancies and Vacancy Complexes with Oxygen, Formed in Nuclei of Crystallite-Conjugation Regions of Iridium Polycrystals,” Fiz. Met. Metalloved. 103(2), 191–250 (2007) [Phys. Met. Metallogr. 103 (2), 185–194 (2007)].

    CAS  Google Scholar 

  10. N. Z. Carr and R. B. McLellan, “The Thermodynamic and Kinetic Behavior of Metal-Vacancy-Hydrogen Systems,” Acta Mater. 52, 3273–3293 (2004).

    Article  CAS  Google Scholar 

  11. Y. Fukai, Y. Ishii, Y. Goto, et al., “Formation of Superabundant Vacancies in Pd-H Alloys,” J. Alloys Compd. 313, 121–132 (2000).

    Article  CAS  Google Scholar 

  12. C. Domain, C. S. Becquart, and J. Foct, “Ab Initio Study of Foreign Interstitial Atom (C, N) Interactions with Intrinsic Point Defects in α-Fe,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 144112 (2004).

    Google Scholar 

  13. H. Akai, M. Akai, S. Blugel, et al., “Theory of Hyperfine Interactions in Metals,” Prog. Theor. Phys. 101 (Suppl.), 11–77 (1990).

    CAS  Google Scholar 

  14. M. Hagen and M. Finnis, “Point Defects and Chemical Potentials in Ordered Alloys,” Philos. Mag. 77(2), 447–464 (1998).

    Article  CAS  Google Scholar 

  15. A. V. Lozovoi and Y. M. Mishin, “Point Defects in NiAl: The Effect of Lattice Vibrations,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 184113 (2003).

    Google Scholar 

  16. P. A. Korzavyi, I. A. Abrikosov, B. Johanson, et al., “First-Principles Calculations of Vacancy Formation Energy in Metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 59(18), 11693–11703 (1999).

    ADS  Google Scholar 

  17. J.M. Ziman, Electrons and Phonons (Oxford, Clarendon, 1960; Mir, Moscow, 1962) [in Russian].

    MATH  Google Scholar 

  18. S. M. Klotsman, “Connection of Self-Diffusion Parameters and Equilibrium Defects with the Characteristics of Monatomic Crystals,” Fiz. Met. Metalloved. 55(2), 297–309 (1983).

    CAS  Google Scholar 

  19. V. I. Smirnov, Course of Higher Mathematics (Fizmatgiz, Moscow, 1958), Vol. 3, Part 1 [in Russian].

    Google Scholar 

  20. M. Sorensen, Y. Mishin, and A. Voter, “Diffusion Mechanisms in Cu Grain Boundaries,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(6), 3658–3673 (2000).

    CAS  ADS  Google Scholar 

  21. D. Yesilleten and T. A. Arias, “Physics of Grain Boundaries in Mo,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 174101 (2001).

    Google Scholar 

  22. P. Soderlind, L. H. Yang, J. A. Moriarty, et al., “First-Principles Formation Energies of Monovacancies in BCC Transition Metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 61(4), 2579–2586 (2000).

    CAS  ADS  Google Scholar 

  23. Y. Tateyama and T. Ohno, “Stability and Clusterization of Hydrogen-Vacancy Complexes in α-Fe: An Ab Initio Study,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 174105 (2003).

    Google Scholar 

  24. Ch. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Klotsman, A.N. Tunofeev, M.S. Dudarev, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 103, No. 5, pp. 509–516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotsman, S.M., Timofeev, A.N. & Dudarev, M.S. Changes in the potential energy upon the formation of vacancies in the volume and in the cores of crystallite-conjugation regions in cubic polycrystalline metals. Phys. Metals Metallogr. 103, 481–488 (2007). https://doi.org/10.1134/S0031918X07050080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07050080

PACS numbers

Navigation