Skip to main content
Log in

Dynamics of a collinear two-position multisublattice ferrimagnet in a three-sublattice model as applied to yttrium iron garnet

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Results of investigations of magnetoelectric effects in substances with a ferrimagnetic ordering are reported. The consideration is performed on the example of yttrium iron garnet (YIG) belonging to the space group O 10h . In the unit cell of the crystal structure of YIG, the magnetic Fe ions occupy 16 positions of the a type and 24 positions of the d type. It is shown that the magnetoelectric effects in YIG can be described in the model of three (rather than 20) magnetic sublattices, namely M a, M d1 and M d2. The magnetization vector M a is determined by Fe ions located in a positions. The Fe ions in d positions are located in two sublattices (d1 and d2) related by a symmetry center. In such a three-sublattice model of a two-position ferrimagnet, one more branch (antimagnon) appears in the spectrum apart from two ferromagnon branches. The third branch is caused by vibrations of only antiferromagnetism vector L = M d1M d2. This branch is associated with changes in the dielectric permittivity and refraction index of the ferrimagnetic medium that are responsible for the magnetoelectric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Turov, “Magnetic Spin Dynamics with Taking into Account Magneto-and Antiferroelectrical Interactions. Antimagnons. NMR in Electrical Field (Scientific Reports),” Preprint (Inst. Fiziki Metallov, Ural. Otd., Russ. Akad. Nauk, Ekaterinburg, 2001).

    Google Scholar 

  2. E. A. Turov and V. V. Nikolaev, “New Physical Phenomena Caused by Magnetoelectric and Antiferroelectric Interactions in Magnets,” Usp. Fiz. Nauk 175(5), 457–473 (2005) [Phys. Usp. 48, 431–448 (2005)].

    Article  Google Scholar 

  3. A. S. Borovik-Romanov, “Antiferromagnetizm,” Itogi Nauki Tekh., Ser.: Fiz.-Mat. Nauki, No. 4 (1962).

  4. M. M. Schieber, “Experimental Magnetochemistry,” in Selected Topics in Solid State Physics, Ed. by E. P. Wohlfarth (North-Holland, Amsterdam, 1967), Vol. VIII.

    Google Scholar 

  5. M. I. Kurkin and E. A. Turov, NMR in Magnetically Ordered Substances and Its Applications (Fizmatlit, Moscow, 1990), pp. 48–52 [in Russian].

    Google Scholar 

  6. A. B. Harris, “Spin-Wave Spectra of Yttrium and Gadolinium Iron Garnet,” Phys. Rev. 132, 2398–2409 (1963).

    Article  CAS  ADS  Google Scholar 

  7. A. B. Harris, “Sublattice Magnetization of Yttrium Iron Garnet at Low Temperature,” Phys. Rev. 155, 499–510 (1967).

    Article  CAS  ADS  Google Scholar 

  8. I. V. Kolokolov, V. S. L’vov, and V. B. Cherepanov, “Interactions and Relaxation of Magnons in Yttrium Iron Garnet—A Twenty-Sublattice Ferrimagnet: YIG Saga. I.,” Preprint (Inst. Avtom. Elektroniki, Sibir. Otd., Akad. Nauk SSSR, Novosibirsk, 1982, no. 183).

    Google Scholar 

  9. I. V. Kolokolov, V. S. L’vov, and V. B. Cherepanov, “Spin Wave Spectrum and Thermodynamics of Yttrium Iron Garnet—A Twenty-Sublattice Ferrimagnet,” Zh. Eksp. Teor. Fiz. 84(2), 1043–1058 (1983).

    CAS  Google Scholar 

  10. D. A. Yablonskii and V. N. Krivoruchko, “Antiferroelectric Resonance in Multisublattice Magnets,” in Problems of Physical Kinetics and Solid State Physics (Naukova Dumka, Kiev, 1990), pp. 444–455 [in Russian].

    Google Scholar 

  11. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, et al., Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  12. D. A. Yablonskii, “Possible Types of Magnetic Ordering of S Ions in the Garnet Structure,” Zh. Eksp. Teor. Fiz. 77(1), 365–376 (1979).

    CAS  Google Scholar 

  13. E. A. Turov, Physical Properties of Magnetically Ordered Crystals (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  14. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  15. C. Kittel, “Theory of Antiferromagnetic Resonance,” Phys. Rev. 82, 565 (1951).

    Article  ADS  Google Scholar 

  16. F. Keffer and C. Kittel, “Theory of Antiferromagnetic Resonance,” Phys. Rev. 85, 329–337 (1952).

    Article  CAS  ADS  Google Scholar 

  17. J. Kaplan and C. Kittel, “Exchange Frequency of Electron-Spin Resonance in Ferrite,” J. Chem. Phys. 21, 760–761 (1953).

    Article  CAS  Google Scholar 

  18. E. A. Turov, “Purely Antiferromagnetic Vibrational Mode in a Two-Sublattice Ferromagnetic Phase,” Pis’ma Zh. Eksp. Teor. Fiz. 73(2), 92–94 (2001) [JETP Lett. 73 (2), 87–89 (2001)].

    Google Scholar 

  19. A Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  20. E. A. Pamyatnykh and E. A. Turov, Introduction to the Electrodynamics of Material Media in Variable and Inhomogeneous Fields (Nauka, Fizmatlit, Moscow, 2000), Chapt. 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Turov, M.I. Kurkin, V.V. Men’shenin, V.V. Nikolaev, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 103, No. 5, pp. 473–479.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turov, E.A., Kurkin, M.I., Men’shenin, V.V. et al. Dynamics of a collinear two-position multisublattice ferrimagnet in a three-sublattice model as applied to yttrium iron garnet. Phys. Metals Metallogr. 103, 446–452 (2007). https://doi.org/10.1134/S0031918X07050031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07050031

PACS numbers

Navigation