Skip to main content
Log in

Effect of mechanical stresses on the magnetic properties of anisotropic electrical steel

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

It has been shown that mechanical stresses arising in anisotropic electrical-sheet steel during both sheet making (residual stresses) and fabrication of magnetic conductors from the sheet parts (applied stresses) have a strong effect on its magnetic properties. It is shown that the principal cause of this effect is the high stress sensitivity of the magnetic texture of the metal. The main varieties of the applied stresses which are mostly responsible for the deterioration of the magnetic characteristics of the steel have been examined. Basically, these are the stretching of the band during straightening annealing and the effect of bending of the specimens while cutting them with guillotine shears during the preparation of the specimens for tests. The technique of the determination of residual stresses by measuring the flexure of the specimen after the insulating coating is removed from its one side is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Belov, Elastic, Thermal, and Electrical Phenomena in Ferromagnetic Metals (Izd-vo Tekh.-Teor. Liter., Moscow, 1951) [in Russian].

    Google Scholar 

  2. V. Druzhinin, Magnetic Properties of Electrical-Sheet Steel (Energiya, Moscow, 1974) [in Russian].

    Google Scholar 

  3. V. A. Zaikova and Ya. S. Shur, “On the Effect of Tension on the Magnetic Properties and Magnetostriction Curves of Silicon Iron,” Fiz. Met. Metalloved. 21(5), 664–673 (1966).

    CAS  Google Scholar 

  4. K. Zeistner and H. Notzon, “Verlustmessungen unter tangentialen mechanischen Spannungen im Elektroblechpaket,” Elektrotechn. Z., A 87(19), 701–706 (1966).

    Google Scholar 

  5. K. K. Namitokov and V. G. Brezinskii, “Effect of Tension Loading on the Magnetization Curve of Electrical-Sheet Steels,” Elektrotekhnika, No. 2, 49–51 (1967).

  6. G. S. Korzunin and M. P. Uvarova, “Determination of Internal Stresses in Sheets of Hot-Rolled Transformer Steel,” Defektoskopiya, No. 4, 131–140 (1969).

  7. G. S. Korzunin, B. A. Tarasyuk, and M. P. Uvarova, “Sudying Magnitude and Character of Residual Stresses in Sheets of Electrical-Sheet Steel,” Izv. Akad. Nauk SSSR, Ser. Fiz., No. 2, 281–288 (1970).

  8. V. V. Druzhinin, “Effect of Elastic Bending of Plates on the Magnetic Properties of Electrical-Sheet Steel,” Elektrotekhnika, No. 7, 50–57 (1973).

  9. V. V. Druzhinin and V. K. Chistyakov, “Effect of Compression Stresses on the Magnetic Properties of Electrical-Sheet Steel,” Elektrotekhnika, No. 1, 52–55 (1973).

  10. V. V. Druzhinin and V. K. Chistyakov, “Effect of Tensile Stresses on the Magnetic Properties of Electrical-Sheet Steel,” Elektrotekhnicheskie Materialy, No. 10, 14–17 (1973).

  11. F. Brailsford and Z. H. M. Abu-Eid, “Effect of Tensile Stress on the Magnetic Properties of Grain-Oriented Silicon-Iron Lamination,” Proc. IEEE 110(4), 751–757 (1963).

    Google Scholar 

  12. D. Brown, C. Holt, and J. E. Thompson, “Influence of Compressiveand Tensile Stresses at Various Temperatures on Some Magnetic Properties of Transformer Laminations,” Proc. IEEE 112, 183–188 (1965).

    Google Scholar 

  13. V. V. Druzhinin, “Changes in Magnetic Losses in a Transformer Steel under the Effect of Nonuniform Normal Pressure,” Fiz. Met. Metalloved. 48(1), 41–45 (1979).

    Google Scholar 

  14. A. D. Sokolov, “On the Effect of Elastic Stresses on the Electromagnetic Properties of Electrical-Sheet Steels,” Fiz. Met. Metalloved. 4(3), 555–558 (1957).

    Google Scholar 

  15. F. V. Ur’yash and M. M. Nazarov, “Effect of Edge Hardening of Stamped Plates on the Properties of Cores,” Vestn. Elektropromyshl., No. 5, 62–64 (1961).

  16. I. Ya. Eingorn, “Effect of Core Molding on the Electromagnetic Parameters of Power Transformers,” Elektrotekhnika, No. 4, 48–52 (1967).

  17. S. S. Grigoryan and V. V. Vardanyan, “On the Determining of Allowable Molding Force for Electric-Motor-Stator Cores,” Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 5, 185–189 (1973).

  18. R. I. Talyshinskii, “Effect of Hardening on the Electromagnetic Parameters of Cores,” Elektrotekhnika, No. 5, 34–36 (1976).

  19. A. V. Borisenko and T. A. Kazarinova, et al., “Effect of Cutting, Punching-out, and Deflashing on the Magnetic Properties of Electrical-Sheet Cold-Rolled Steel,” Trudy Leningrad. Politekhnich. Inst., No. 359, 88–91 (1977).

    Google Scholar 

  20. V. F. Davydov, Yu. A. Kopylenko, A. D. Krepkov, and R. I. Talyshinskii, “Effect of Mechanical Characteristics on the Stampability of Electrical-Sheet Steels with and without Coatings,” in Structure and Properties of Electrical-Sheet Steel, Trudy Inst. Fiz. Metallov, Ural. Nauchn. Tsentr, Akad. Nauk SSSR (Sverdlovsk, 1977), No. 33, pp. 150–152 [in Russian].

  21. Z. Ruzga, Electrical Resistance Extensometers (Moscow, 1961) [in Russian].

  22. Yu. Ya. Mekhontsev, USSR Inventor’s Certificate No. 111 331, Byull. Izobret., No. 3 (1965).

  23. Yu. Ya. Mekhontsev, “A Device for Measuring Elastic Stresses,” Radio, No. 5, 51–53 (1958).

  24. Yu. Ya. Mekhontsev, “Magnetic Methods of Estimation of Internal Stresses,” Defektoskopiya, No. 2, 94–95 (1966).

  25. Yu. Ya. Mekhontsev, “Magnetoelastic Transducers for the Investigation of Residual Streses,” in Residual Stresses in Blank Articles and Details of Large-Scale Machines (NIITYaZhMASh, Sverdlovsk, 1971), pp. 91–111 [in Russian].

    Google Scholar 

  26. G. S. Korzunin and G. Yu. Vaulina, “Methods and Tools for a Nondestructive Control of Anisotropy of Magnetic Properties of Sheet Ferromagnetic Materials,” Defektoskopiya, No. 8, 3–30 (1994).

  27. G. S. Korzunin, Magnetic Methods of Determining Crystallographic Texture (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1995) [in Russian].

    Google Scholar 

  28. G. S. Korzunin, M. P. Uvarova, and E. I. Zenin, “Harmonic Composition of the Curve of the Normal Component of the Magnetization Vector in Electrical-Sheet Steel as a Function of the Magnitude of Tensile Stresses,” in Structure and Properties of Electrical-Sheet Steel. Trudy Inst. Fiz. Metallov, Ural. Nauchn. Tsentr, Akad. Nauk SSSR (Sverdlovsk, 1977), No. 33, pp. 121–122 [in Russian].

  29. G. S. Korzunin and M. P. Uvarova, USSR Inventor’s Certificate No. 560174, Byull. Izobret., No. 20 (1977).

  30. G. S. Korzunin and M. P. Uvarova, “Determining of Internal Stresses in Textureed Electrical-Sheet Steel,” Elektrotekh. Mater., No. 10 (1979).

  31. A. G. Zhuravskii, L. B. Kazadzhan, and S. P. Slauta, “A Device for Controlling Mechanical Stresses in Transformer Steel,” Defektoskopiya, No. 5, 34–38 (1983).

  32. V. A. Lepeshkin and N. L. Bryukhatov, “Studying Magnetocrystalline Anisotropy and Stresses in Ferromagnetic Materials Using AC Magnetometers,” in Trudy Mosk. Inst. Istochn. Toka (Moscow, 1974), No. 467, pp. 272–279 [in Russian].

  33. O. Dahl and R. I. Pfaffenberger, “Anisotropie in magnetischen Werkstoffen,” Z. Phys. 71, 93–105 (1931).

    Article  CAS  Google Scholar 

  34. N. L. Bryukhatov, “A New Method of Magnetic Analysis of Texture of Forge-Rolled Materials,” Zavod. Lab., No. 10, 42–46 (1933).

  35. A. I. Yan’shin, “Magnetic Anisotropy of Polycrystalline Iron in the Presence of Internal Streses,” Zh. Eksp. Teor. Fiz., No. 7, 786–799 (1940).

  36. V. K. Chistyakov, G. S. Korzunin, Yu. A. Lazarev, and O. B. Korobka, USSR Inventor’s Certificate No. 962 822, Byull. Izobret., No. 36 (1982).

  37. G. S. Korzunin and V. K. Chistyakov, “A Method for Estimating Effects of Residua Stresses on the Magnetic Properties of Anisotropic Electrical-Sheet Steel,” Defektoskopiya, No. 8, 31–35 (1994).

  38. G. S. Korzunin and L. A. Litvinenko, “On the Possibility of Determining Mechanical Stresses Using Magnetic-Powder Patterns,” Defektoskopiya, No. 11, 40–46 (1997).

  39. Ya. S. Umanskii, X-ray Diffraction Methods for Studying Metals (Moscow: Metallurgiya, 1960).

    Google Scholar 

  40. N. S. Fastov, “Energy of Crystal-Lattice Distortions,” in Problems of Metallography and Physics of Metals (GNTI, Moscow, 1955), pp. 377–387 [in Russian].

    Google Scholar 

  41. D. D. Mishin, Effect of Crystal-Lattice Defects on the Properties of Magnetic Materials (Ural. Gos. Univ., Sverdlovsk, 1969) [in Russian].

    Google Scholar 

  42. S. Chikasumi and K. O. Suzuki, “On a Mosaic Structure of Domains in Silicon-Iron Crystal,” in Magnetic Structure of Ferromagnets, Ed. by S. V. Vonsovskii (Nauka, Moscow, 1969), pp. 112–127 [in Russian].

    Google Scholar 

  43. N. N. Geveling et al., “A Device for Measuring Stress Relaxation in Thin Spring Bands upon Bending,” Zavod. Lab. 27(1), 89–91 (1961).

    Google Scholar 

  44. L. P. Babichev, V. P. Makarov, B. V. Molotilov, and A. F. Sidokhin, “Investigation of the Dynamics of Domain Structure in the Bulk of Massive Fe-3% Si Crystals by X-ray Diffraction Topography,” in Proceedings of an International Conference of Magnetism MKM-73 (Nauka, Moscow, 1974), Vol. IV, pp. 173–177 [in Russian].

    Google Scholar 

  45. Ya. S. Shur and Yu. N. Dragoshanskii, “On the Shape of Closure Domains inside Fe-Si CrystalS,” Fiz. Met. Metalloved. 22(5), 702–710 (1966).

    CAS  Google Scholar 

  46. I. Ya. Dekhtyar and T. V. Dubrova, “Effect of Plastic Bending on the Domain Structure of Fe-3% Si Single Crystals,” in Sbornik Akad. Nauk Ukr. SSR (Naukova Dumka, Kiev, 1965) [in Russian].

    Google Scholar 

  47. D. D. Mishin, R. M. Grechishkin, and Yu. F. Bashkov, “Effect of Dislocations Arising upon Plastic Bending on the Magnetic Properties of Silicon Iron,” in Magnetic, Magnetomechanical, and Electrical Properties of Ferromagnets, Uchenye Zapiski Ural. Gos. Univ.: Ser. Fiz., No. 4 (Sverdlovsk, 1968), pp. 46–54 [in Russian].

  48. J. E. Evans and A. Van Holle, “Evidence for the Effectiveness of Stress Coating in Altering Magnetic Properties of Commercially Produced Grain-Oriented 3% Silicon-Iron,” IEEE Trans. Magn. 15(6), 1580–1585 (1979).

    Article  Google Scholar 

  49. S. D. Washko and E. G. Choby, “Evidence for the Effectiveness of Stress Coating in Improving the Magnetic Properties of High Permeability 3% Si-Fe,” IEEE Trans. Magn. 15(6), 1586–1591 (1979).

    Article  Google Scholar 

  50. W. Jillek and A. Hubert, “The Influence of Mechanic Stress on Loss and Domain of Oriented Transformer Steel,” J. Magn. Magn. Mater 19(1–3), 365–368 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.S. Korzunin, R.B. Puzhevich, M.B. Tsyrlin, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 103, No. 2, pp. 147–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korzunin, G.S., Puzhevich, R.B. & Tsyrlin, M.B. Effect of mechanical stresses on the magnetic properties of anisotropic electrical steel. Phys. Metals Metallogr. 103, 142–151 (2007). https://doi.org/10.1134/S0031918X07020044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07020044

PACS numbers

Navigation