Skip to main content
Log in

Stationary states of extended nonlinear Schrödinger equation with a source

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Porsezian and K. Nakkeeran, “Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift,” Phys. Rev. Lett. 76(21), 3955–3958 (1996).

    Article  CAS  Google Scholar 

  2. A. P. Tankeev, A. G. Shagalov, M. A. Borich, and V. V. Smagin, “The Evolution of Volume Magnetostatic Wave-Envelope Solitons in a Ferromagnet-Insulator-Metal Structure,” Fiz. Met. Metalloved. 95(1), 10–20 (2003) [Phys. Met. Metallogr. 95, 6–16 (2003)].

    CAS  Google Scholar 

  3. M. A. Borich, A. V. Kobelev, V. V. Smagin, and A. P. Tankeyev, “Evolution of the Surface Magnetostatic Wave Envelope Solitons in a Ferromagnet-Dielectric-Metal Structure,” J.Phys.: Condens. Matter 15, 8543–8559 (2003).

    Article  CAS  Google Scholar 

  4. V. V. Smagin, M. A. Borich, and A. P. Tankeev, “Soliton-like States on the Extended Nonlinear Schrödinger Equation,” Fiz. Met. Metalloved. 100(6), 5–13 (2005) [Phys. Met. Metallogr. 100, 529–537 (2005)].

    CAS  Google Scholar 

  5. A. P. Tankeev, A. G. Shagalov, M. A. Borich, and V. V. Smagin, “Magnetostatic Potasek-Tabor Solitons in Layered Ferromagnet-Insulator-Metal Structures,” Fiz. Met. Metalloved. 93(6), 29–40 (2002) [Phys. Met. Metallogr. 93, 525–535 (2002)].

    CAS  Google Scholar 

  6. J. D. Gibbon, “A Survey of the Origins and Physical Importance of Soliton Equations,” Philos. Trans. R. Soc. A315, 315–351 (1985).

    Google Scholar 

  7. A. P. Tankeev, A. G. Shagalov, M. A. Borich, and V. V. Smagin, “Nonlinear Dynamics of Surface Magnetostatic Waves in Ferromagnet-Insulator-Metal Structures,” Phys. Met.Metallogr. 95(Suppl. 1), S56–S67 (2003).

    Google Scholar 

  8. V. V. Smagin, M. A. Borich, and A. P. Tankeev, “Dynamic Cnoidal States of Magnetization in a Ferromagnet-Dielectric-Metal Structure,” Fiz. Met. Metalloved. 98(6), 12–27 (2004) [Phys. Met. Metallogr. 98, 555–560 (2005)].

    CAS  Google Scholar 

  9. A. P. Tankeyev, V. V. Smagin, and M. A. Borich, “Solitary Waves of Magnetization in a Ferromagnet-Dielectric-Metal Structure,” Proceedings of an International Symposium on Magnetism (Supplementary issue), Moscow, 25–30 June, 2005 (Moscow, 2005), pp. 130–133.

  10. Yu. S. Kivshar’ and G. P. Agraval, Opticheskie solitony (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  11. T. Yukawa, J. Yamada, K. Abe, and J. Ikenoue, “Effects of Metal on the Dispersion Relation of Magnetostatic Surface Waves,” Jpn. J. Appl. Phys. 16(12), 2187–2196 (1977).

    Article  CAS  Google Scholar 

  12. T. Yukawa, J. Ikenoue, J. Yamada, and K. Abe, “Effects of Metal on Dispersion Relations of Magnetostatic Volume Waves,” J. Appl. Phys. 49(1), 376–382 (1978).

    Article  CAS  Google Scholar 

  13. A. D. Boardman, S. A. Nikitov, N. A. Waby, et al., “Effects of Third-Order Dispersion on Nonlinear Magnetostatic Spin Waves in Ferromagnetic Films,” Phys. Rev. B: Condens. Matter 57(17), 10667–10673 (1998).

    CAS  Google Scholar 

  14. T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “On Exact Solitary Wave Solutions of the Nonlinear Schrödinger Equation with a Source,” J. Phys. A: Math. Gen. 38(16), L271–L276 (2005).

    Article  Google Scholar 

  15. Zh. Li, Lu Li, H. Tian, and G. Zhou, “New Types of Solitary Wave Solutions for the Higher Order Nonlinear Schrödinger Equation,” Phys. Rev. Lett. 84(18), 4096–4099 (2000).

    Article  CAS  Google Scholar 

  16. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1952; Fizmatgiz, Moscow, 1962, 1963).

    Google Scholar 

  17. T. B. Benjamin and M. J. Lighthill, “On Cnoidal Waves and Bores,” Proc. Roy. Soc. A224, 448–461 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Borich, V.V. Smagin, A.P. Tankeev, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 103, No. 2, pp. 122–135.

The author is also known by the name Tankeyev. The name used here is a transliteration under the BSI / ANSI scheme adopted by this journal.—Ed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borich, M.A., Smagin, V.V. & Tankeev, A.P. Stationary states of extended nonlinear Schrödinger equation with a source. Phys. Metals Metallogr. 103, 118–130 (2007). https://doi.org/10.1134/S0031918X07020020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07020020

PACS numbers

Navigation