Skip to main content
Log in

Calculation of Green’s functions for nanostructures in the Hubbard model in the approximation of static fluctuations

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Anticommutator Green’s functions, correlation functions, and magnetic moments (spins) for nanosystems consisting of 3, 4, and 5 atoms are calculated using the Hubbard model in the static-fluctuation approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Bader, “Magnetism in Low Dimensionality,” Surf. Sci. 500(1–3), 172–188 (2002).

    Article  CAS  Google Scholar 

  2. V. J. Luban, “New Issues in Zero Dimensions,” J. Magn. Magn. Mater. 272–276, 635–641 (2004).

    Article  CAS  Google Scholar 

  3. V. I. Trefilov, D. V. Shchur, B. P. Tarasov, et al., Fullerenes as the Basis for Future Materials (Kiev, 2001).

  4. Yu. I. Golovin, Introduction to Nanotechnology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  5. H. Hasegawa, “Nonextensive Thermodynamics of the Two-Site Hubbard Model,” Physica A (Amsterdam) 351(1), 273–285 (2005).

    Google Scholar 

  6. H. Hasegawa, Preprint cond-mat/0506553 (2005).

  7. S. A. Cannas, A. C. Magalhäes, and F. A. Tamarit, “Evidence of Exactness of the Mean-Field Theory in the Nonextensive Regime of Long-Range Classical Spin Models,” Phys. Rev. B: Condens. Matter Mater. Phys. 61(17), 11521–11532 (2000).

    CAS  Google Scholar 

  8. J. P. Bucher, D. C. Douglass, and L. A. Bloomfield, “Magnetic Properties of Free Cobalt Clusters,” Phys. Rev. Lett. 66(23), 3052–3055 (1991).

    Article  CAS  Google Scholar 

  9. S. E. Aspel, J. W. Emmert, J. Deng, et al., “Surface-Enhanced Magnetism in Nickel Clusters,” Phys. Rev. Lett. 76(9), 1441–1444 (1996).

    Article  Google Scholar 

  10. M. Rit, Nanodesigning in Science and Engineering. Introduction to Nanocalculations (NITs Regular and Chaotic Dynamics, Moscow-Izhevsk, 2005) [in Russian].

    Google Scholar 

  11. Proceedings of the V National Conference on Applications of X-ray and Synchrotron Radiations, Neutrons and Electrons for Studying Nanomaterials and Nanosystems RSNE NANO-2005 (Moscow, 2005).

  12. S. V. Kozyrev, D. V. Leshchev, and I. V. Shakleina, “On the Energy Stability of Carbon Nanoclusters,” Fiz. Tverd. Tela 43(5), 926–929 (2001) [Phys. Solid State 43, 963–966 (2001)].

    Google Scholar 

  13. J. Hubbard, “Electron Correlations in Narrow Energy,” Proc. R. Soc. London, Ser. A 276(1365), 238–257 (1963).

    Article  Google Scholar 

  14. Yu. A. Izyumov, N. I. Chashchin, and D. S. Alekseev, Theory of Strongly Correlated Systems. Generating Functional Method (NITs Regular and Chaotic Dynamics, Moscow-Izhevsk, 2006) [in Russian].

    Google Scholar 

  15. G. I. Mironov, “Antiferromagnetism in the Hubbard Model,” Fiz. Tverd. Tela 39(9), 1594–1599 (1997).

    CAS  Google Scholar 

  16. G. I. Mironov, “B-B′-U Hubbard Model in the Static-Fluctuation Approximation,” Fiz. Tverd. Tela 41(6), 951–956 (1999).

    Google Scholar 

  17. G. I. Mironov, “The Ground-State Energy of the B-B′-U Hubbard Model in the Static-Fluctuation Approximation,” Fiz. Tverd. Tela 44(2), 209–212 (2002) [Phys. Solid State 44, 216–220 (2002)].

    Google Scholar 

  18. V. J. Emery, “Theory of High-T c Superconductivity in Oxides,” Phys. Rev. Lett. 58(26), 2794–2797 (1987).

    Article  CAS  Google Scholar 

  19. E. H. Lieb and F. Y. Wu, “Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension,” Phys. Rev. Lett. 20(25), 1445–1448 (1968).

    Article  Google Scholar 

  20. G. I. Mironov and R. R. Nigmatullin, in Proceedings of XXX International Winter School of Theoretical Physics Kourovka-2004 (Ekaterinburg, 2004), p. 190.

  21. G. I. Mironov, “Magnetic Susceptibility of Two-Dimensional Two-Sublattice Hubbard Model Calculated in the Static-Fluctuation Approximation,” Fiz. Tverd. Tela 47(6), 1075–1081 (2005) [Phys. Solid State 47, 1111–1117 (2005)].

    Google Scholar 

  22. C. Yang, A. N. Kocharian, and Y. L. Chiang, “Phase Transitions and Exact Ground-State Properties of the One-Dimensional Hubbard Model in a Magnetic Field,” J. Phys.: Condens. Matter 12(33), 7433–7454 (2000).

    Article  CAS  Google Scholar 

  23. G. I. Mironov, The Structure and Dynamics of Molecular Systems. Collection of Papers (Kazan, 2003), No. 10, part 1, pp. 323–326.

  24. G. I. Mironov, in Actual Problems in the Physics of Condensed Media. Collection of Papers (Kazan, 2004), pp. 235–255.

  25. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (2nd ed., Nauka, Moscow, 1975; Plenum Press, New York, 1967).

    Google Scholar 

  26. G. I. Mironov, “Nanosystems in the Static-Fluctuation Approximation Hubbard Model,” Fiz. Tverd. Tela 48(7), 1299–1306 (2006) [Phys. Solid State 48, 1378–1386 (2006)].

    Google Scholar 

  27. A. A. Khamzin and R. R. Nigmatullin, “Study of Magnetic Ordering in a Multisublattice Ising Model in Terms of Static Fluctuation Approximation,” Fiz. Met. Metalloved. 92(5), 39–48 (2001) [Phys. Met. Metallogr. 92, 460–469 (2001)].

    CAS  Google Scholar 

  28. G. I. Mironov, “Study of One-Particle Green Function in Bipartite Hubbard Model in Terms of Static Fluctuation Approximation,” Fiz. Nizk. Temp. 31(12), 1388–1394 (2005).

    Google Scholar 

  29. G. I. Mironov, in Proceedings of XXXI International Winter School of Theoretical Physics Kourovka-2006 (Ekaterinburg, 2006), pp. 32–33.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.I. Mironov, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 102, No. 6, pp. 611–620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, G.I. Calculation of Green’s functions for nanostructures in the Hubbard model in the approximation of static fluctuations. Phys. Metals Metallogr. 102, 568–577 (2006). https://doi.org/10.1134/S0031918X06120039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X06120039

PACS numbers

Navigation