Skip to main content
Log in

Crystallite-conjugation regions and adjacent lattice regions in polycrystalline iridium: I. Composition and properties of adjacent lattice regions formed in polycrystalline iridium during annealing in an ultrahigh vacuum

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this work, we have studied the characteristics of regions in which atomic probes (APs) 57Co(57Fe) were diffusionally localized in polycrystalline iridium (poly-Ir) using a previously developed method based on Mössbauer spectroscopy. Poly-Ir becomes alloyed with oxygen during annealing even in an ultrahigh vacuum already at a temperature of 0.18T m (T m is the melting point of the matrix). After the annealing temperature reaches a certain value, there arises a “compensated” state of lattice regions adjacent to crystallite-conjugation regions (“adjacent zones,” or AZs) in poly-Ir. Such a state of AZs arises due to the mutual compensation of positive relaxation volumes of oxygen atoms and negative relaxation volumes of oxygen-vacancy complexes that are formed during each annealing. Therefore, in the “compensated” state of AZs the isomer shifts δ2 of components 2 of Mössbauer spectra of 57Fe APs become equal to “intrinsic” isomer shifts δintrs, 2 of the Mössbauer spectra of 57Fe APs located in the AZs of impurity-free metals. The “intrinsic” isomer shifts depend parabolically on the charges Z of the matrix-atom nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Klotsman, “Impurity States and Diffusion in Grain Boundaries in Metals,” Usp. Fiz. Nauk 160(1), 99–139 (1990).

    CAS  Google Scholar 

  2. S. M. Klotsman, M. I. Kurkin, V. N. Kaigorodov, and V. V. Dyakin, “Intercrystalline Diffusion of Cobalt in Polycrystalline Tungsten: I. Theory of Diffusion of Substitutional Atomic Probes in the Core of Crystallite-Conjugation Regions and Adjacent Zones,” Fiz. Met. Metalloved. 85(2), 31–38 (1998) [Phys. Met. Metallogr. 85 (2), 135–139 (1998)].

    CAS  Google Scholar 

  3. V. N. Kaigorodov, S. M. Klotsman, M. I. Kurkin, et al., “Intercrystalline Diffusion of Cobalt in Polycrystalline Tungsten: II. Experimental Study in the Core of Crystallite-Conjugation Regions and Adjacent Zones,” Fiz. Met. Metalloved. 85(2), 137–143 (1998) [Phys. Met. Metallogr. 85 (2), 212–217 (1998)].

    CAS  Google Scholar 

  4. S. M. Klotsman, V. N. Kaigorodov, A. V. Ermakov, and V. K. Rudenko, “Regions of Enhanced Concentration of Point Defects Localized near Internal Interfaces in Condensed Media: III. Composition and Structure of Vacancy-Oxygen Complexes in Regions of Enhanced Concentration of Point Defects in Pd, Ta, W, and Pt,” Fiz. Met. Metalloved. 95(1), 85–90 (2003) [Phys. Met. Metallogr. 95 (1), 79–85 (2003)].

    CAS  Google Scholar 

  5. S. M. Klotsman, V. N. Kaigorodov, A. V. Ermakov, and V. K. Rudenko, “Regions of Enhanced Concentration of Point Defects Localized near Internal Interfaces in Condensed Media: IV. Ultrahigh Concentrations of Vacancies and the Enthalpies of Their Formation in Regions of Enhanced Concentration of Point Defects in Pd, Ta, W, and Pt,” Fiz. Met. Metalloved. 95(2), 31–39 (2003) [Phys. Met. Metallogr. 95 (2), 137–145 (2003)].

    CAS  Google Scholar 

  6. S. M. Klotsman, V. N. Kaigorodov, M. I. Kurkin, and V. V. Dyakin, “Segregation of 57Co Atomic Probes in the Cores of Grain Boundaries in d-Transition Metals,” Interface Sci. 8, 323–334 (2000).

    Article  CAS  Google Scholar 

  7. H. Gleiter, “Nanostructural Materials: Basic Concepts,” Acta Mater. 48(1), 1–29 (2000).

    Article  CAS  Google Scholar 

  8. S. M. Klotsman, V. N. Kaigorodov, M. S. Dudarev, et al., “Crystallite-Conjugation Regions in Polycrystalline Transition and Noble Metals: II. Enthalpies of Formation of Vacancies and Vacancy Complexes with Oxygen in the Core of Crystallite-Conjugation Regions in Polycrystalline Cr, Ta, and W,” Fiz. Met. Metalloved. 99(5), 86–93 (2005) [Phys. Met. Metallogr. 99, 527–534 (2005)].

    CAS  Google Scholar 

  9. Iridium, Proceedings of the International Symposium on Iridium, March 12–16, 2000, Nashville, Tenessee, Section C: Application of Iridium and Iridium Alloys, Ed. by E. K. Ohriner, R. D. Lanam, P. Panfilov, and H. Harada (TMS, Warrendale, Pa., 2000), pp. 167–247.

  10. G. H. Jöhannesson, T. Bligaard, A. V. Ruban, et al., “Combined Electronic Structure and Evolutionary Search Approach to Materials Design,” Phys. Rev. Lett. 88, 255506 (2002).

    Google Scholar 

  11. N. K. Arkhipova, S. M. Klotsman, I. P. Polikarpova, et al., “Bulk Self-Diffusion of 192Ir in Iridium Single Crystals,” Fiz. Met. Metalloved. 62(6), 1181–1185 (1986).

    CAS  Google Scholar 

  12. A. V. Ermakov, S. M. Klotsman, S. A. Matveev, et al., “Bulk Diffusion of Gold in Single-Crystal Iridium,” Fiz. Met. Metalloved. 92(2), 87–94 (2001) [Phys. Met. Metallogr. 92, 185–192 (2001)].

    CAS  Google Scholar 

  13. A. V. Ermakov, S. M. Klotsman, S. A. Matveev, et al., “Effect of the Atmosphere of Diffusion Annealing on the Parameters of Gold Diffusion in Iridium,” Fiz. Met. Metalloved. 93(5), 45–52 (2002) [Phys. Met. Metallogr. 93, 435–442 (2002)].

    CAS  Google Scholar 

  14. G. N. Belozerskii, “Mössbauer Spectroscopy As a Method for Studying Surfaces,” (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  15. R. E. Watson and L. H. Bennett, “Volume-Corrected Isomer Shifts of Transition-Metal Impurities: An Orbital Electronegativity Scale,” Phys. Rev. B: Solid State 15(11), 5136–5140 (1977).

    CAS  Google Scholar 

  16. D. L. Williamson, S. Buckspan, and R. Ingals, “Search for Magnetic Ordering in HCP Iron,” Phys. Rev. B: Solid State 6(11), 4194–4206 (1972).

    CAS  Google Scholar 

  17. I. Deszi, U. Gonser, and G. Labgouche, “Systematics of the Isomer Shifts of 57Fe in Various Hosts,” Phys. Rev. Lett. 62(14), 1659–1662 (1989).

    Article  Google Scholar 

  18. R. Ingals, H. G. Drickamer, and G. DePasquali, “Isomer Shift of 57Fe in Transition Metals under Pressure,” Phys. Rev. 155(2), 165–170 (1967).

    Article  Google Scholar 

  19. Ch. Kittel, Introduction to Solid-State Physics (Wiley, New York, 1956; Nauks, Moscow, 1959).

    Google Scholar 

  20. M. A. Shtremel’, Strength of Alloys. Part 2: Deformation (MISiS, Moscow, 1997) [in Russian].

    Google Scholar 

  21. Ch. Sauer, “Messung der ruckstossfreien Resonanz-Absorption am 6.2 KeV Niveau in 181Ta,” Z. Phys. 222, 439–454 (1969).

    Article  CAS  Google Scholar 

  22. P. A. Korzavyi, I. A. Abrikosov, B. Johanson, et al., “First-Principles Calculations of the Vacancy Formation Energy in Metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 59(18), 11693–11703 (1999).

    Google Scholar 

  23. C. Domain, C. S. Becquart, and J. Foct, “Ab Initio Study of Foreign Interstitial Atoms (C, N) Interactions with Intrinsic Point Defects in α-Fe,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 144112 (2004).

    Google Scholar 

  24. D. J. Siegel and J. C. Yamilton, “First-Principles Study of the Solubility, Diffusion and Clustering of C in Ni,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 094105 (2003).

    Google Scholar 

  25. V. Rosato, “Comparative Behavior of Carbon in BCC and FCC Iron,” Acta Metall. 37(10), 2759–2763 (1989).

    Article  CAS  Google Scholar 

  26. A. V. Ermakov, S. M. Klotsman, V. G. Pushin, et al., “Recrystallization of Deformed Single Crystals of Ir,” Scr. Mater. 42, 209–212 (2000).

    Article  CAS  Google Scholar 

  27. R. E. Bedford, G. Bonnier, H. Maas, and F. Pavese, “Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points,” Metrologia 33, 133 (1996).

    Article  Google Scholar 

  28. J. Odeurs, G. R. Hoy, C. L’Abbe, et al., “Quantum-Mechanical Theory of Enhanced Resolution in Mössbauer Spectroscopy Using a Resonant Detector,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(10), 6148–6157 (2000).

    CAS  Google Scholar 

  29. Interaction of Metals of Group VA with Residual Gases in Vacuum, Ed. by M. R. Mel’nikov and A. G. Arakelov (GONTI, Moscow, 1970), pp. 399–403 [in Russian].

    Google Scholar 

  30. S. M. Klotsman, V. N. Kaigorodov, A. V. Ermakov, et al., “Regions of Enhanced Concentration of Point Defects Localized near Internal Interfaces in Condensed Media: II. Formation of Vacancy-Oxygen Complexes in Regions of Enhanced Concentration of Point Defects in Pd, W, and Pt,” Fiz. Met. Metalloved. 93(6), 82–90 (2002) [Phys. Met. Metallogr. 93 (6), 575–583 (2002)].

    CAS  Google Scholar 

  31. H. Akai, M. Akai, S. Blügel, et al., “Theory of Hyperfine Interactions in Metals,” Prog. Theor. Phys. 101(Suppl.), 11–77 (1990).

    CAS  Google Scholar 

  32. R. W. Siegel, “Vacancy Concentrations in Metals,” J. Nucl. Mater. 69–70, 117–146 (1978).

    Article  Google Scholar 

  33. M. Sorensen, Y. Mishin, and A. Voter, “Diffusion Mechanisms in Cu Grain Boundaries,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(6), 3658–3673 (2000).

    CAS  Google Scholar 

  34. G. Lu and N. Kioussis, “Interaction of Vacancies with Grain Boundaries in Al: A First-Principles Study,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 024101 (2001).

    Google Scholar 

  35. D. Yesilleten and T. A. Arias, “Physics of Grain Boundaries in BCC Mo,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 174101 (2001).

    Google Scholar 

  36. M. Back, M. Eliner, and E. J. Mittemeijer, “The Formation of Interstitial Solid Solutions in Solvents with FCC Structure: Elastic versus Chemical Interaction,” Acta Mater. 49, 985–993 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Klotsman, A.N. Timofeev, S.A. Matveev, V.N. Kaigorodov, A.V. Ermakov, V.K. Rudenko, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 102, No. 3, pp. 330–338.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotsman, S.M., Timofeev, A.N., Matveev, S.A. et al. Crystallite-conjugation regions and adjacent lattice regions in polycrystalline iridium: I. Composition and properties of adjacent lattice regions formed in polycrystalline iridium during annealing in an ultrahigh vacuum. Phys. Metals Metallogr. 102, 309–317 (2006). https://doi.org/10.1134/S0031918X06090110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X06090110

PACS numbers

Navigation