Skip to main content
Log in

Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An algorithm for modeling the evolution of a monodispersed ensemble of precipitates of a variable composition during heat treatment has been developed. In this algorithm, we for the first time have simultaneously taken into consideration the effect of diffusion processes in particles on their evolution kinetics, as well as the multicomponent nature of the alloy, and diffusion interaction between the components. The proposed method is based on the simultaneous solution of a set of diffusion equations and the balance and thermodynamic equations. A qualitative comparison of the results of calculations of the variation of the carbonitride-precipitate composition over the depth of precipitates upon heat treatment with available experimental data has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Popov and I. I. Gorbachev, “Simulation of the Evolution of Precipitates in Multicomponent Alloys,” Fiz. Met. Metalloved. 95(5), 16–25 (2003) [Phys. Met. Metallogr. 95, 417–426 (2003)].

    CAS  Google Scholar 

  2. V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC Precipitate Evolution in Steels with Consideration for the Formation of New Nuclei,” Philos. Mag. 85(22), 2449–2467 (2005).

    Article  CAS  Google Scholar 

  3. L. Meyer, H. E. Buhler, and F. Heisterkamp, “Metallkundliche Untersuchungen zur Wirkungsweise von Titan in unlegierten Baustahlen,” Arch. Eisenhuttehw. 43(11), 823–832 (1972).

    CAS  Google Scholar 

  4. M. Hillert and L.-I. Staffonsson, “The Regular Solution Model for Stoichiometric Phases and Ionic Melts,” Acta Chem. Scand. 24(10), 3618–3626 (1970).

    Article  CAS  Google Scholar 

  5. B. Sundman and J. Agren, “A Regular Solution Model for Phase with Several Components and Sublattices, Suitable for Computer Applications,” J. Phys. Chem. Solids 42(4), 297–301 (1981).

    Article  CAS  Google Scholar 

  6. V. V. Popov, “Simulation of Dissolution of Carbide and Nitride Precipitates in Austenite,” Fiz. Met. Metalloved. 84(4), 39–52 (1997) [Phys. Met. Metallogr. 84, 349–358 (1997)].

    CAS  Google Scholar 

  7. V. V. Popov, “Numerical Simulation of Diffusion Interaction between Precipitates and the Matrix in Multicomponent Systems,” Izv. Ross. Akad. Nauk, Met., No. 2, 129–138 (1997).

  8. V. F. Shatinskii and A. N. Nesterenko, Protective Diffusion Coatings (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  9. T. G. Vozmishcheva and I. A. Murtazin, “Numerical Solution of Thermoduffusion Problem with Various Boundary Conditions,” Fiz. Met. Metalloved., No. 6, 105–109 (1988).

  10. Ya. D. Kogan and A. A. Bulgach, “Computer Simulation of the Kinetics of Diffusion Saturation upon Gas Nitriding,” Metalloved. Term. Obrab. Met., No. 1, 10–20 (1974).

  11. W. D. Murray and F. Landis, “Numerical and Machine Solution of Transient Heat Conduction Problems Involving Melting or Freezing,” Trans. ASME, Ser. C: J. Heat Transfer 2(2), 106–112 (1959).

    Google Scholar 

  12. E. N. Akimova, I. I. Gorbachev, and V. V. Popov, “Solving Multicomponent Diffusion Problems Using Parallel Algorithm of the Matrix “Progonka” Method. Mathematical Modeling,” Mat. Model. 17(9), 85–92 (2005).

    Google Scholar 

  13. V. V. Popov, Simulation of Transformations in Carbonitrides upon Heat Treatment of Steels (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  14. M. Y. Wey, T. Sakuma, and T. Nishizawa, “Growth of Alloy Carbide Particles in Austenite,” Trans. JIM 22(10), 733–742 (1981).

    CAS  Google Scholar 

  15. M. I. Gol’dshtein and V. V. Popov, Solubility of Interstitial Phases in Steels upon Heat Treatment (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  16. V. V. Popov, M. L. Lobanov, and A. O. Khomenko, “Diffusion Interaction between Titanium Carbonitrides and Iron,” Fiz. Khim. Obrab. Mater. 76(5), 156–162 (1993).

    Google Scholar 

  17. J. H. Swisher, “Sulfur Solubility and Internal Sulfidation of Iron-Titanium Alloys,” Trans. AIME 242(12), 2433–2439 (1968).

    CAS  Google Scholar 

  18. L. S. Lyakhovich, L. G. Voroshkin, and B. M. Khusid, “Study of Diffusion Mass Transfer in Multicomponent Solutions,” Izv. Akad. Nauk BSSR, Ser. Fiz. Energ. Nauk, No. 4, 116–122 (1976).

  19. J. Agren, “A Revised Expression for the Diffusivity of Carbon in Binary Fe-C Austenite,” Scr. Metall. 20(11), 1507–1510 (1986).

    Article  CAS  Google Scholar 

  20. P. Grieveson and E. T. Turkdogan, “Kinetics of Reaction of Gaseous Nitrogen with Iron: I. Kinetics of Nitrogen Solution in γ-Iron,” Trans. Metall. Soc. AIME 230(3), 407–414 (1964).

    CAS  Google Scholar 

  21. J.-O. Anderson and J. Agren, “Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases,” J. Appl. Phys. 72(4), 1350–1355 (1992).

    Article  Google Scholar 

  22. F. J. J. Van Loo and G. F. Bastin, “On the Diffusion of Carbon in Titanium Carbide,” Metall. Trans. A 20A(3), 403–411 (1989).

    Google Scholar 

  23. Yu. F. Levinskii, Yu. D. Stroganov, S. E. Salibekov, et al., “Diffusion of Nitrogen in Titanium,” Izv. Akad. Nauk SSSR, Neorg. Mater. 4(12), 2068–2073 (1968).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.I. Gorbachev, V.V. Popov, E.N. Akimova, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 102, No. 1, pp. 694–704.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachev, I.I., Popov, V.V. & Akimova, E.N. Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition. Phys. Metals Metallogr. 102, 18–28 (2006). https://doi.org/10.1134/S0031918X06070039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X06070039

PACS numbers

Navigation