Skip to main content
Log in

Studying grain-boundary stresses in copper by the molecular-statics method

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Grain-boundary stresses in copper for 60 symmetrical tilt grain boundaries with different orientations of the grain-boundary plane and tilt axis have been calculated by the molecular-statics method with the use of embedded-atom-method potentials of interatomic interaction. It has been established that the grain-boundary stresses are negative for grain boundaries with small excess volumes and increase approximately linearly with a buildup of the excess volume. It has been shown that the increase in grain-boundary stresses is connected with a decrease in the average coordination number of atoms, whereas pairs of closely spaced atoms in the grain-boundary core cause a negative contribution to grain-boundary stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ibach, “The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures,” Surf. Sci. Rep. 29, 193–263 (1997).

    Article  CAS  Google Scholar 

  2. F. Spaepen, “Interface and Stress in Thin Films,” Acta Mater 48, 31–42 (2000).

    Article  CAS  Google Scholar 

  3. Yu. R. Kolobov, Diffusion-Controlled Processes in Grain Boundaries and Plasticity of Metallic Materials (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  4. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  5. B. Bokstein, M. Ivanov, Yu. Kolobov, and A. Ostovsky, “Grain Boundary Diffusion in Consolidated Nanomaterials. Stress Effect on Grain Boundary Diffusion,” in Nanodiffusion. Diffusion in Nanostructured Materials, Ed. by D. Beke, J. Metastab. Nanocryst. Mater. 19, 69–107 (2004).

  6. R. Birringer, M. Hoffmann, and P. Zimmer, “Interface Stress in Polycrystalline Materials: The Case of Nanocrystalline Pd,” Phys. Rev. Lett. 88, 206104 (2002).

    Google Scholar 

  7. J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Leonard, “Why Do Grain Boundaries Exhibit Finite Facet Length,” Phys. Rev. Lett. 90(24), 246102 (2003).

    Google Scholar 

  8. K. L. Merkle, “Atomic-Scale Grain Boundary Relaxation Modes in Metals and Ceramics,” Microscop. Microanal. 3, 339–351 (1997).

    CAS  Google Scholar 

  9. M. S. A. Daw and M. I. Baskes, “Embedded Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B: Condens. Matter. 29(12), 6443–6453 (1984).

    CAS  Google Scholar 

  10. S. V. Eremeev, A. G. Lipnitskii, A. I. Potekaev, and E. V. Chulkov, “Vacancies on Low-Index Surfaces of Transition Metals and Aluminum,” Fiz. Tverd. Tela 39(8), 1386–1388 (1997).

    CAS  Google Scholar 

  11. S. V. Eremeev, A. G. Lipnitskii, A. I. Potekaev, and E. V. Chulkov, “Vacancies on the Surfaces of Transition Metals and Aluminum: Surfaces with High Indices,” Fiz. Met. Metalloved. 84(3), 77–81 (1997) [Phys. Met. Metallogr. 84, 251–255 (1997)].

    CAS  Google Scholar 

  12. A. Suzuki and Yu. Mishin, “Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries,” Interface Sci. 11, 131–148 (2003).

    Article  CAS  Google Scholar 

  13. D. Wolf, “Correlation between the Energy and Structure of Grain Boundaries in BCC Metals. II: Symmetrical Tilt Boundaries,” Philos. Mag. A 62(4), 447–464 (1990).

    Google Scholar 

  14. M. S. Sorensen, Yu. Mishin, and A. F. Voter, “Diffusion Mechanism in Cu Boundaries,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(6), 3658–3673 (2000).

    CAS  Google Scholar 

  15. Yu. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, et al., “Structural Stability and Lattice Defects in Copper: Ab initio, Tight-Binding, and Embedded-Atom Calculations,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 224106 (2001).

    Google Scholar 

  16. G. J. Ackland and M. W. Finnis, “Semi-Empirical Calculation of Solid Surface Tensions in Body-Centered Cubic Transition Metals,” Philos. Mag. A 54(2), 301–315 (1986).

    CAS  Google Scholar 

  17. P. Gumbsch and M. S. Daw, “Interface Stresses and Their Effects on the Elastic Moduli of Metallic Multilayers,” Phys. Rev. B: Condens. Matter 44(8), 3934–3938 (1991).

    Google Scholar 

  18. P. Beurden and G. J. Kramer, “Parameterization of Modified Embedded-Atom-Method Potentials for Rh, Pd, Ir, and Pt Based on Density Functional Theory Calculations to Surface Properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 165106 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Lipnitskii, A.V. Ivanov, Yu.R. Kolobov, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 101, No. 3, pp. 330–336.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipnitskii, A.G., Ivanov, A.V. & Kolobov, Y.R. Studying grain-boundary stresses in copper by the molecular-statics method. Phys. Metals Metallogr. 101, 303–308 (2006). https://doi.org/10.1134/S0031918X0603015X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X0603015X

PACS numbers

Navigation