Skip to main content
Log in

Bioerosion Structures on Benthic Foraminiferal Tests from the Upper Cretaceous and Paleogene of Western Siberia

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Bioerosion structures, including holes, pits, and grooves, on the surface of benthic foraminiferal tests from the Upper Cretaceous and Paleogene of Western Siberia are studied. Their morphology is examined, their possible origin and the paleogeographic and stratigraphic distribution in sections representing marine basins of Western Siberia are discussed. The ichnospecies assemblage studied includes Oichnus simplex Bromley, 1981, O. paraboloides Bromley, 1981, O. gradatus Nielsen et Nielsen, 2001, and O. ovalis Bromley, 1993.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Abdel-Fattah, Z.A., Bioerosion, in the middle Eocene larger foraminifer Nummulites in the Fayum depression, Egypt, Proc. Geol. Assoc., 2018, vol. 129, no. 6, pp. 774–781. https://doi.org/10.1016/j.pgeola.2018.08.003

    Article  Google Scholar 

  2. Alexander, S.P. and DeLaca, T.E., Feeding adaptation of the foraminiferan Cibicides refulgens living epizoically and parasitically on the Antarctic scallop Adamussium colbecki, Biol. Bull. 1987, vol. 173, pp. 136–159. https://doi.org/10.2307/1541868

    Article  PubMed  Google Scholar 

  3. Arnold, A.J., D’Escrivan, F., and Parker, W.C., Predation and avoidance responses in the foraminifera of the Galapagos hydrothermal mounds, J. Foram. Res., 1985, vol. 15, no. 1, pp. 38–42. https://doi.org/10.2113/GSJFR.15.1.38

    Article  Google Scholar 

  4. Banner, F.T., A new genus of the Planorbulinidae an endoparasite of another foraminifer, Rev. Espa. Micropaleontol., 1971, vol. 3, pp. 113–128.

    Google Scholar 

  5. Bilyard, G.R., The feeding habits and ecology of Dentalium entalestimpsoni Henderson (Mollusca: Scaphopoda), Veliger, 1974, vol. 17, no. 2, pp. 126–138.

    Google Scholar 

  6. Blissett, D.J. and Pickerill, R.K., Observations on macroborings from the White Limestone Group of Jamaica, Cainozoic Res., 2004, vol. 3, nos. 1–2, pp. 167–187.

    Google Scholar 

  7. Blissett, D.J. and Pickerill, R.K., Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West Indies, Scripta Geol., 2007, no. 134, pp. 77–108.

  8. Breton, G., Wisshak, M., Néraudeau, D., and Morel, N., Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic context, Acta Palaeontol. Pol., 2017, vol. 62, no. 1, pp. 45–57. https://doi.org/10.4202/app.00304.2016

    Article  Google Scholar 

  9. Brett, C.E., Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms, J. Paleontol., 1985, vol. 59, no. 3, pp. 625–635. https://doi.org/jstor.org/stable/1304981.

  10. Bromley, R.G., Concepts in ichnotaxonomy illustrated by small round holes in shells, Acta Geol. Hispan., 1981, vol. 16, nos. 1–2, pp. 55–64.

    Google Scholar 

  11. Bromley, R.G., Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis, Bull. Geol. Soc. Denmark, 1993, vol. 40, pp. 167–173.

    Article  Google Scholar 

  12. Bromley, R.G., A stratigraphy of marine bioerosion, Spec. Publ.–Geol. Soc. London, 2004, vol. 228, pp. 455–479. https://doi.org/10.1144/GSL.SP.2004.228.01.20

    Article  Google Scholar 

  13. Charó, M.P., Charó, G.D., Aceñolaza, G., and Cavallotto, J.L., Bioerosion on Late Pleistocene marine mollusks: A paleoclimatological and paleoecological comparison of MIS 7 and MIS 5e with modern beaches (Río Negro, Argentina), Acta Geol. Sin., 2022, vol. 96, no. 4, pp. 1181–1198. https://doi.org/10.1111/1755-6724.14692

    Article  Google Scholar 

  14. Cherchi, A. and Schroeder, R., Perforations branchues dues II des Foraminiferes cryptobiotiques dans des coquilles actuelles et fossils, C. R. Acad. Sci., 1991, vol. 312, no. 1, pp. 111–115.

    Google Scholar 

  15. Collen, J.D., Morphology and development of the test surface in some species of Notorotalia (Foraminiferida), Rev. Esp. Micropaleontol., 1973, vol. 5, pp. 113–132. https://doi.org/10.1007/978-94-017-2860-7

    Article  Google Scholar 

  16. Culver, S.J. and Lipps, J.H., Predation on and by Foraminifera, in Predator—Prey Interactions in the Fossil Record, Kelley, P.H., Kowalewski, M., Hansen, T.A., et al., Eds., Boston: Springer, 2003, pp. 7–32. https://doi.org/10.1007/978-1-4615-0161-9_2.

  17. Daley, A.C., Statistical analysis of mixed-motive shell borings in Ordovician, Silurian, and Devonian brachiopods from northern and eastern Canada, Can. J. Earth Sci., 2008, vol. 45, no. 2, pp. 213–229. https://doi.org/10.1139/E07-061

    Article  ADS  Google Scholar 

  18. Dietl, G.P. and Kelley, P.H., Can naticid gastropodpredators be identified by the holes they drill? Ichnos. 2006, vol. 13, no. 1–6, pp. 103–108. https://doi.org/10.1080/10420940600848889

    Article  Google Scholar 

  19. Donovan, S.K., A plea not to ignore ichnotaxonomy: recognizing and recording Oichnus Bromley, Swiss J. Palaeontol., 2017, vol. 136, pp. 369–372. https://doi.org/10.1007/s13358-017-0134-9

    Article  Google Scholar 

  20. Donovan, S.K. and Harper, D.A.T., Rare borings in Pleistocene brachiopods from Jamaica and Barbados, Carib. J. Sci., 2007, vol. 43, no. 1, pp. 59–64. https://doi.org/10.18475/cjos.v43i1.a5

    Article  Google Scholar 

  21. Donovan, S.K. and Jagt, J.W.M., Oichnus Bromley borings in the irregular echinoid Hemipneustes Agassiz from the Type Maastrichtian (Upper Cretaceous, the Netherlands and Belgium), Ichnos, 2002, vol. 9, nos. 1–2, pp. 67–74. https://doi.org/10.1080/10420940190034139

    Article  Google Scholar 

  22. Donovan, S.K. and Jagt, J.W.M., Oichnus simplex Bromley infesting Hemipneustes striatoradiatus (Leske) (Echinoidea) from the Maastrichtian type area (Upper Cretaceous, the Netherlands), Int. J. Plant Animal Traces, 2019, vol. 27, no. 1, pp. 64–69. https://doi.org/10.1080/10420940.2019.1584561

    Article  Google Scholar 

  23. Donovan, S.K., Blissett, D.J., and Pickerill, R.K., Jamaican Cenozoic ichnology: Review and prospectus, Geol. J., 2015, vol. 50, no. 3, pp. 364–382. https://doi.org/10.1002/gj.2629

    Article  ADS  Google Scholar 

  24. Douglas, R.G., Benthonic foraminiferal biostratigraphy in the central North Pacific, Leg 17, Deep Sea Boring Project, 1973, vol. 17, pp. 607–671. https://doi.org/10.2973/DSDP.PROC.17.121.1973

    Article  Google Scholar 

  25. Eckert, J.D., The ichnogenus Tremichnus in the Lower Silurian of western New York, Lethaia, 1988, vol. 21, no. 3, pp. 281–283. https://doi.org/10.1111/j.1502-3931.1988.tb02080.x

    Article  Google Scholar 

  26. El-Sorogy, A.S., Demircan, H., and Alharbi, T., Gastrochaenolites ichnofacies from intertidal seashells, Al-Khobar coastline, Saudi Arabia, J. Afr. Earth Sci., 2020, vol. 171, no. 103943. https://doi.org/10.1016/j.jafrearsci.2020.103943

  27. Frozza, C.F., Pivel, M.A.G., Suárez-Ibarra, J.Y., Ritter, M.N., and Coimbra, J.C., Bioerosion on Late Quaternary planktonic foraminifera related to paleoproductivity in the Western South Atlantic, Paleoceanogr., Paleoclimatol., 2020, vol. 35, no. 8, pp. 1–16. https://doi.org/10.1029/2020pa003865

    Article  Google Scholar 

  28. Gibert, J.M., Domenech, R., and Martinell, J., An ethological framework for animal bioerosion trace fossils upon mineral substrates with proposal of a new class, fixichnia, Lethaia, 2004, vol. 37, no. 4, pp. 429–437. https://doi.org/10.1080/00241160410002144

    Article  Google Scholar 

  29. Gibert, J.M., Domenech, R., and Martinell, J., Bioerosion in shell beds from the Pliocene Roussillon Basin, France: Implications for the (macro)bioerosion ichnofacies model, Acta Palaeontol. Pol., 2007, vol. 52, no. 4, pp. 783–798. https://doi.org/10.1111/1755-6724.14692

    Article  Google Scholar 

  30. Gormus, M., Demircan, H., Kagan Kadioglu, Y., Yagmurlu, F., Us M.S. Microborings as indication of cryptic life modes in the foraminifer Orbitoides: Maastrichtian sediments of the Haymana and Nallıhan districts (Ankara, Turkey), Turk. J. Earth Sci., 2019, vol. 28, pp. 232–251. https://doi.org/10.3906/yer-1804-17

    Article  CAS  Google Scholar 

  31. Harper, E.M., Plio-Pleistocene octopod boring behavior in scallops from Florida, Palaios, 2002, vol. 17, no. 3, pp. 292–295. https://doi.org/10.1669/0883-1351(2002)017<0292:PPODBI>2.0.CO;2

    Article  ADS  Google Scholar 

  32. Heeger, T., Electronenmikroskopische untersuchungen zur emahrungsbiologie benthischer foraminiferen, Ber. Sonderforschungsbereich, 1990, vol. 313, no. 31, pp. 1–139.

    ADS  Google Scholar 

  33. Heron-Allen, E., Contributions to the study of the bionomics and reproductive processes of the Foraminifera, Philos. Trans. R. Soc. London, 1915, vol. 206, nos. 325–334, pp. 227–279. https://doi.org/10.1098/RSTB.1915.0005

  34. Hickman, C.S. and Lipps, J.H., Foraminiferivory: selective ingestion of foraminifera and test alterations produced by the neogastropod Olivella, J. Foraminiferal Res., 1983, vol. 13, no. 2, pp. 108–114. https://doi.org/10.2113/GSJFR.13.2.108

    Article  Google Scholar 

  35. Kowalewski, M., Morphometric analysis of predatory drillholes, Palaeogeogr., Palaeoclim., Palaeoecol., 1993, vol. 102, nos. 1–2, pp. 69–88. https://doi.org/10.1016/0031-0182(93)90006-5

    Article  ADS  Google Scholar 

  36. Langer, M.R., Lipps, J.H., and Moreno, G., Predation on foraminifera by the dentaliid deep-sea scaphopod Fissidentalium megathyris, Deep Sea Res., Part I, 1995, vol. 142, no. 6, pp. 849–857. https://doi.org/10.1016/0967-0637(95)00025-2

    Article  Google Scholar 

  37. Lipps, J.H., Biotic interactions in Benthic Foraminifera, in Biotic Interactions in Recent and Fossil Benthic Communities, Tevesz, M.J.S., McCall P.L., et al., Eds., Boston: Springer, 1983, vol. 3, pp. 331–376. https://doi.org/10.1007/978-1-4757-0740-3_8.

  38. Lipps, J.H., Predation on foraminifera by coral reef fish: taphonomic and evolutionary implications, Palaios, 1988, vol. 3, no. 3, pp. 315–326. https://doi.org/10.2307/3514660

    Article  ADS  Google Scholar 

  39. Livan, M., Uber Bohr-Löcher au rezenten und fossilen Invertebraten, Senckenbergiana, 1937, vol. 19, no. 138, pp. 138–150. https://doi.org/10.2110/PEC.07.88.0301

    Article  Google Scholar 

  40. Lorenzo, N. and Verde, M., Estructuras de bioerosión en moluscos marinos de la Formación Villa Soriano (Pleistoceno Tardío–Holoceno) de Uruguay, Rev. Brasil. Paleontol., 2004, vol. 7, no. 3, pp. 319–328.

    Article  Google Scholar 

  41. Malumian, N., Cabrera, M., Náñez, C., and Olivero, E., Bioerosion patterns in Cretaceous-Cenozoic benthic foraminiferal tests from Patagonia and Tierra del Fuego Island, Argentina, SEPM Spec. Publ., 2007, vol. 88, pp. 301–308. https://doi.org/10.2110/pec.07.88.0301

    Article  Google Scholar 

  42. Maslakova, N.I., The study of globotruncanid tests using a scanning electron microscope, Lifestyle and patterns of settlement of modern and fossil microfauna, Tr. Inst. Geol. Geofiz., Sib. Otd. Akad. Nauk SSSR, 1974, vol. 333, pp. 52–56.

    Google Scholar 

  43. Nesterov, I.I., Trubin, Ya.S., Smirnov, P.V., and Yan, P.A., First findings of tracefossils from the Tavda Formation (Middle–Upper Eocene) in the southwestern part of Western Siberia, Dokl. Earth Sci., 2018, vol. 481, no. 1, pp. 862–865. https://doi.org/10.31857/S086956520001199-1

    Article  ADS  CAS  Google Scholar 

  44. Nielsen, J.K., Borings formed by Late Cretaceous endobiontic foraminifers within larger benthic foraminifers, Acta Palaeontol. Pol., 2002, vol. 47, no. 4, pp. 673–678.

    Google Scholar 

  45. Nielsen, K.S.S., Foraminiferivory revisited: a preliminary investigation of holes in foraminifera, Bull. Geol. Soc. Denmark, 1999, vol. 45, pp. 139–142. https://doi.org/10.37570/bgsd-1998-45-16

    Article  Google Scholar 

  46. Nielsen, K.S.S. and Nielsen. J.K., Bioerosion in Pliocene to late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus, Ichnos, 2001, vol. 8, no. 2, pp. 99–116. https://doi.org/10.1080/10420940109380178

    Article  Google Scholar 

  47. Nielsen, K.S.S., Nielsen, J.K., and Bromley, R.G., Palaeoecological and ichnological significance of microborings in Quaternary Foraminifera, Palaeontol. Electr., 2003, vol. 6, no. 2, pp. 1–13.

    ADS  Google Scholar 

  48. Ortiz-Jerónimo, C.G., Gomez-Espinosa, M.C., Gío-Argáez, F.R., Talavera-Mendoza, O., Dios, L.A.F., and Martínez-Villa, B.B., Drilling predation on juvenile and adult gastropod shells during the Pliocene in the eastern Pacific, southern Mexico, J. South Am. Earth Sci., 2021, vol. 110, 103352. https://doi.org/10.1016/j.jsames.2021.103352

    Article  Google Scholar 

  49. Pickerill, R.K. and Donovan, S.K., Ichnology of the Pliocene Bowden shell bed, southeast Jamaica, Contrib. Tertiary Quat. Geol., 1998, vol. 35, no. 1–4, pp. 161–175.

    Google Scholar 

  50. Pokorny, R. and Stofik, M., Evidence of bioerosive structures in Quaternary glaciomarine sediments from Southwestern Iceland, Ichnos, 2016, vol. 24, no. 3, pp. 1–18. https://doi.org/10.1080/10420940.2016.1260567

    Article  Google Scholar 

  51. Reyment, R.A., Preliminary observations on gastropod predation in the western Niger Delta, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1966, vol. 2, pp. 81–102. https://doi.org/10.1016/0031-0182(66)90010-1

    Article  Google Scholar 

  52. Ruggiero, E., Bioerosive processes affecting a population of brachiopods (Upper Pliocene, Apulia), Bull. Geol. Soc.Denmark, 1999, vol. 45, pp. 169–172. https://doi.org/10.37570/bgsd-1998-45-23

  53. Ruggiero, E. and Annuziata, G., Bioerosion on a Terebratula scillae population from the Lower Pleistocene of Lecce area (Southern Italy), Acta Geol. Hispan., 2002, vol. 37, no. 1, pp. 43–51.

    Google Scholar 

  54. Ruggiero, E., Buono, G., and Raia, P., Bioerosion on brachiopod shells of a thanatocoenosis of Alboran Sea (Spain), Ichnos, 2006, vol. 13, pp. 175–184. https://doi.org/10.1080/10420940600853855

    Article  Google Scholar 

  55. Ruiz-Munoz, R. and Gonzalez-Regalado, M.L., Bioerosion en ostracods, Ceogaceta, 1989, vol. 6, pp. 87–90.

    Google Scholar 

  56. Santos, A., Mayoral, E., Muniz, F., Bajo, I., and Adriaensens, O., Bioerosión en erizos irregulares (Clypeasteroidea) del mioceno Superior en el sector suroccidental de la cuenca del Guadalquivir (Provincia de Sevilla), Spanish J. Palaeontol., 2003, vol. 18, no. 2, pp. 131–141. https://doi.org/10.7203/sjp.18.2.21639

    Article  Google Scholar 

  57. Sengupta, S. and Nielsen, J.K., Bioerosion in Middle Eocene larger foraminifera Nummulites obtusus (Sowerby) from Lakhpat, northwest Kutch, Gujarat, Indian J. Geosci., 2009, vol. 63, no. 1, pp. 81–86. https://doi.org/10.1016/J.PGEOLA.2018.08.003

    Article  Google Scholar 

  58. Shonman, D. and Nybakken, J.W., Food preferences, food availability and food resource partitioning in two sympatric species of cephalaspidean opisthobrachs, Veliger, 1978, vol. 21, no. 1, pp. 120–126.

    Google Scholar 

  59. Sliter, W.V., Laboratory experiments on the life cycle and ecologic controls of Rosalina globularis d’Orbigny, J. Protozool., 1965, vol. 12, no. 2, pp. 210–215. https://doi.org/10.1111/j.1550-7408.1965.tb01838.x

    Article  Google Scholar 

  60. Sliter, W.V., Predation on benthic foraminifers, J. Foram. Res., 1971, vol. 1, no. 1, pp. 20–29. https://doi.org/10.2113/GSJFR.1.1.20

    Article  Google Scholar 

  61. Sliter, W.V., Foraminiferal life and residue assemblages from Cretaceous slope deposits, Geol. Soc. Am. Bull., 1975, vol. 86, no. 7, pp. 897–906. https://doi.org/10.1130/0016-7606(1975)86<897:FLARAF>2.0.CO;2

    Article  ADS  Google Scholar 

  62. Svavarsson, J., Gudmundson, G., and Brattegard, T., Asellote isopods (Crustacea) preying on foraminifera in the deep sea? in Abstr. 6th Deep-Sea Biology Symp., 1991, p. 63.

  63. Todd, R., A new Rosalina (Foraminifera) parasitic on a Bivalve, Deep Sea Res. Oceanogr. Abstr., 1965, vol. 12, no. 6, pp. 831–837. https://doi.org/10.1016/0011-7471(65)90806-5

    Article  ADS  Google Scholar 

  64. Trubin, Ya.S. and Yan, P.A., Fossil burrows Thalassinoides in the gaize of the Serov Formation (Middle Trans-Urals, Upper Paleocene), Byull. Tomsk. Polytekh. Univ. Eng. Georesour., 2020, vol. 331, no. 6, pp. 32–40. https://doi.org/10.18799/24131830/2020/6/2672

    Article  Google Scholar 

  65. Vakulenko, L.G., Dultseva, O.V., and Burleva, O.V., Structure and depositional environment of the Vasyugan horizon (upper Bathonian–Oxfordian) in the Aleksandrovskoe arch area (West Siberia), Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1212–1227.

    Article  ADS  Google Scholar 

  66. Vohnik, M., Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow, Biogeosciences, 2021, vol. 18, no. 8, pp. 2777–2790. https://doi.org/10.5194/bg-18-2777-2021

    Article  ADS  CAS  Google Scholar 

  67. Wisshak, M., Knaust, D., and Bertling, M., Bioerosion ichnotaxa: review and annotated list, Facies, 2019, vol. 65, no. 24, pp. 1–39. https://doi.org/10.1007/s10347-019-0561-8

    Article  Google Scholar 

  68. Wisshak, M., Kroh, A., Bertling, M., Knaust, D., Nielsen, J.K., Jagt, J.W., Neumann, C., and Nielsen, K.S., In defence of an iconic ichnogenus—Oichnus Bromley, 1981, Ann. Soc. Geol. Pol., 2015, vol. 85, no. 3, pp. 445–451. https://doi.org/10.14241/ASGP.2015.029

    Article  Google Scholar 

  69. Zamora, S., Mayoral, E., Gámez Vintaned, J.A., Bajo, S., and Espílez, E., The infaunal echinoid Micraster: Taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain, Geobios, 2008, vol. 41, no. 1, pp. 15–29. https://doi.org/10.1016/j.geobios.2007.01.010

    Article  Google Scholar 

  70. Zonneveld, J. and Gingras, M., Sedilichnus, Oichnus, Fossichnus, and Tremichnus: ‘small round holes in shells’ revisited, J. Paleontol., 2014, vol. 88, no. 5, pp. 895–905. https://doi.org/10.1017/S0022336000057565

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We greatly acknowledge the support from Dr. Mikhail A. Alekseev (Russian Geological Research Institute (VSEGEI)) for valuable professional suggestions on this work, and Prof. Dr. Martin R. Langer (University of Bonn) for constructive comments. The investigations were carried using the equipment of the Center for Collective Use “Bioinert Systems of the Cryosphere” (Tyumen Scientific Center, SB RAS).

Funding

PVS has been supported by the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2022-299 within the framework of the development program for a world-class Research Center “Efficient development of the global liquid hydrocarbon reserves”. This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Trubin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and anymal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubin, Y.S., Marinov, V.A., Kosenko, I.N. et al. Bioerosion Structures on Benthic Foraminiferal Tests from the Upper Cretaceous and Paleogene of Western Siberia. Paleontol. J. 57, 1212–1223 (2023). https://doi.org/10.1134/S0031030123100064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030123100064

Keywords:

Navigation