Skip to main content
Log in

First Evidence of Micromycete Damage to Infructescences of the Cretaceous Genus Friisicarpus N. Maslova et Herman (Platanaceae)

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Morphologically similar damage to carpels of two Friisicarpus species (Platanaceae), F. kubaensis (Western Siberia, Albian–Cenomanian) and F. sarbaensis (Western Kazakhstan, Cenomanian–Turonian) induced by micromycetes, is described for the first time. Fruiting bodies of the micromycetes are developed within the tissues, forming tubercles on the carpel surfaces. The morphology of the fruiting bodies, their distribution on the substrate, as well as dropping out of the substrate after maturation, link them with some modern representatives of Pleosporales. A possible role of insects in the transfer of fungal spores, and participation of arthropods in the pollination of early Platanaceae, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Crane, P.R., Friis, E.M., and Pedersen, K.R., Lower Cretaceous angiosperm flowers: fossil evidence on early radiation of dicotyledons, Science, New Ser., 1986, vol. 232 (4752), pp. 852–854.

    Google Scholar 

  2. Crane, P.R., Pedersen, K.R., Friis, E., and Drinnan, A.N., Early Cretaceous (Early to Middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of Eastern North America, Syst. Bot., 1993, vol. 18, pp. 328–344.

    Article  Google Scholar 

  3. Crous, P.W., Lombard, L., Sandoval-Denis, M., et al., Fusarium: more than a node or a foot-shaped basal cell, Stud. Mycol., 2021, vol. 98, no. 1, pp. 1–184.

    Article  Google Scholar 

  4. Crous, P.W., Wingfield, M.J., Burgess, T.I., et al., Fungal Planet Description Sheets: 469–557, Persoonia: Mol. Phylog. Evol. Fungi, 2016, vol. 37, pp. 218−403.

    Article  Google Scholar 

  5. Deb, D., Khan, A., and Dey, N., Phoma diseases: Epidemiology and control, Plant Pathol. 2020, vol. 69, no. 7, pp. 1203–1217.

    Article  Google Scholar 

  6. Fakir, G.A., Welty, R.E., and Cowling, E.B., Prevalence and pathogenicity of fungi associated with achenes of sycamore in the field and in storage, Phytopathology, 1971, vol. 61, pp. 660–668.

    Article  Google Scholar 

  7. Friis, E.M., Crane, P.R., and Pedersen, K.R., Reproductive structures of Cretaceous Platanaceae, Det Kong. Danske Vidensk. Selskab Biol. Skrift, 1988, vol. 31, pp. 1–55.

    Google Scholar 

  8. Golovneva, L.B., Genus Ettingshausenia (Platanaceae) in the Cenomanian-Turonian floras of Eurasia, in Paleobotany, vol. 2, Golovneva, L.B., Ed., St. Petersburg: Marafon, 2011, pp. 127–163.

    Google Scholar 

  9. Dyakov, Yu.T., Fungi and plants, Priroda, 2003, no. 5, pp. 73–78.

  10. Golovneva, L.B., The morphology, taxonomy, and occurrence of the genus Pseudoprotophyllum Hollick (Platanaceae) in Late Cretaceous floras of Northern Asia, Paleontol. J., 2009, vol. 43, no. 10, pp. 1230–1244.

    Article  Google Scholar 

  11. Hitchcock, L.A. and Cole, A.L.J., Gnomonia platani, the ascogenous state of Gloeosporium platani, found in New Zealand, N. Z. J. Bot., 1978, vol. 16, no. 3, pp. 411–411.

    Article  Google Scholar 

  12. Horst, R.K., Westcott’s Plant Disease Handbook, Dordrecht: Springer, 2013.

    Book  Google Scholar 

  13. Hou, L.W., Groenewald, J.Z., Pfenning, L.H., et al., The Phoma-like dilemma, Stud. Mycol. 2020, vol. 96, pp. 309–396.

    Article  Google Scholar 

  14. Hu, S.S., Dilcher, D.L., Jarzen, D.M., and Taylor, D.W., Early steps of angiosperm-pollinator coevolution, Proc. Nat. Acad. Sci. USA, 2008, vol. 105, no. 1, pp. 240–245.

    Article  Google Scholar 

  15. Huegele, I.B. and Manchester, S.R., Newly recognized reproductive structures linked with Langeria from the Eocene of Washington, USA, and their affinities with Platanaceae, Int. J. Plant Sci., 2022, vol. 183, no. 5.

  16. Huegele, I.B. and Wang, H., An unusual plane tree from the Early Cretaceous of Kansas, USA, Rev. Palaeobot. Palynol., 2023, vol. 309, no. 104815.

  17. Huegele, I.B., Spielbauer, R.J., and Manchester, S.R., Morphology and systematic affinities of Platanus dissecta Lesquereux (Platanaceae) from the Miocene of western North America, Int. J. Plant Sci., 2019, vol. 181, no. 3, pp. 324–341.

    Article  Google Scholar 

  18. Hughes, D.P., Wappler, T., and Labandeira, C.C., Ancient death-grip leaf scars reveal ant–fungal parasitism, Biol. Lett., 2011, no. 7, pp. 67–70.

  19. Jamali, S. and Yalveh, S., The first report of Libertella platani on Platanus orientalis in Iran, Mycol. Iranica, 2017, vol. 4, no. 2, pp. 133–134.

    Google Scholar 

  20. Khorsandy, S., Nikbakht, A., Sabzalian, M.R., and Pessarakli, M, Effect of fungal endophytes on morphological characteristics, nutrients content and longevity of plane trees (Platanus orientalis L.), J. Plant Nutrit., 2016, vol. 39, no. 8, pp. 1156–1166.

    Article  Google Scholar 

  21. Kodrul, T.M., Maslova, N.P., Tekleva, M.V., and Golovneva, L.B., Platanaceous reproductive structures and leaves from the Cretaceous locality Kundur, Amur region, Russia, Palaeobotanist, 2013, vol. 62, no. 1, pp. 123–148.

    Google Scholar 

  22. Krassilov, V.A. and Shilin, P.V., New platanoid staminate heads from the Mid–Cretaceous of Kazakhstan, Rev. Palaeobot. Palynol., 1995, vol. 85, pp. 207–211.

    Article  Google Scholar 

  23. Labandeira, C.C., Wilf, P., Johnson, K.R., and Marsh, F., Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0, Washington, D.C.: Smithson. Inst., 2007.

    Google Scholar 

  24. Li, Q., Su, T., Deng, W., et al., High frequency of arthropod herbivore damage in the Miocene Huaitoutala flora, Qaidam Basin, northern Tibetan Plateau, Rev., Palaeobot. Palynol., 2022, vol. 298, no. 104569.

  25. Mamikonyan, T.O. and Manasyan, G.G., Fungal diseases of Platanus L. species in the conditions of Armenia, in Aktual’nyye problemy botaniki v Armenii (Actual Problems of Botany in Armenia), Yerevan: UGU, 2008, pp. 226–228.

    Google Scholar 

  26. Maslova, N.P., Extinct and extant Platanaceae and Hamamelidaceae: morphology, systematics, and phylogeny, Paleontol. J., 2003, vol. 37, Suppl. 5, pp. 467–589.

    Google Scholar 

  27. Maslova, N.P., New genus Sarbaicarpa gen. nov. (Hamamelidales) from the Cenomanian–Turonian of Western Kazakhstan, Paleontol. J., 2009, vol. 43, no. 10, pp. 1281–1297.

    Article  Google Scholar 

  28. Maslova, N.P., Systematics of fossil platanoids and hamamelids, Paleontol. J., 2010, vol. 44, no. 11, pp. 1379–1466.

    Article  Google Scholar 

  29. Maslova, N.P. and Herman, A.B., Infructescences of Friisicarpus nom. nov. (Platanaceae) and associated foliage of the platanoid type from the Cenomanian of Western Siberia, Paleontol. J., 2006, vol. 40, no. 1, pp. 109–113.

    Article  Google Scholar 

  30. Maslova, N.P. and Tekleva, M.V., Infructescences of Friisicarpus sarbaensis sp. nov. (Platanaceae) from the Cenomanian–Turonian of Western Kazakhstan, Paleontol. J., 2012, vol. 46, no. 4, pp. 433–443.

  31. Maslova, N.P., Tekleva M.V., Sokolova, A.B. et al., Infructescences of Friisicarpus kubaensis sp. nov. and leaves of Ettingshausenia kubaensis sp. nov. from the Albian–Cenomanian of Chulym–Yenisei depression, Russia, Palaeobotanist, 2011, vol. 60, no. 2, pp. 209–236.

  32. Maslova, N.P., Tekleva, M.V., and Remizowa, M.V., Krassilovianthus gen. nov., a new staminate inflorescence with similarities to Platanaceae and Hamamelidaceae from the Cenomanian–Turonian of western Kazakhstan, Rev. Palaeobot. Palynol., 2012, vol. 180, pp. 1–14.

  33. Maslova, N.P., Kodrul, T.M., and Vasilenko, D.V., First record of bacteriomorphic organisms in platanoid infructescences from the Campanian Kundur locality, Amur Region, Paleontol. J., 2014, vol. 48, no. 5, pp. 563–570.

    Article  Google Scholar 

  34. Maslova, N.P., Sokolova, A.B., Kodrul, T.M., and Tobias, A.V., Consortia of conifers and fungi in the Paleocene of the Amur Region, Russia, Paleontol. J., 2021, vol. 55, no. 12, pp. 1525–1553.

    Article  Google Scholar 

  35. Maslova, N.P., Tobias, A.V., and Kodrul, T.M., Recent Studies of co-evolutionary relationships of fossil plants and fungi: success, problems, prospects, Paleontol. J., 2021, vol. 55, no. 1, pp. 1–17.

  36. Maslova, N.P, Sokolova, A.B., Vasilenko, D.V., et al., Endophytic micromycetes on the leaves of the genus Taxodium Richard (Cupressaceae) from the Lower Paleocene of the Amur Region, Paleontol. J., 2018, vol. 52, no. 12, pp. 1473–1479.

    Article  Google Scholar 

  37. Pastirčáková, K. and Pastirčák, M., The anamorph of Erysiphe platani on Platanus hispanica in Slovakia, Mycotaxon, 2006, vol. 97, pp. 189–194.

    Google Scholar 

  38. Pelleteret, P., Crovadore, J., Cochard, B., et al., Urban London plane tree dieback linked to fungi in the Botryosphaeriaceae, Urban Forest. Urban Green., 2017, vol. 22, pp. 74–83.

    Article  Google Scholar 

  39. Perera, R.H., Hyde, K.D., Maharachchikumbura, S.S.N., et al., Fungi on wild seeds and fruits, Mycosphere, 2020, vol. 11, no. 1, pp. 2108–2480.

    Article  Google Scholar 

  40. Robles, C.A., Lopez, S.E., McCargo, P.D., and Carmarán, C.C., Relationships between fungal endophytes and wood-rot fungi in wood of Platanus acerifolia in urban environments, Canad. J. Forest Res., 2015, vol. 45, no. 7, pp. 929–936.

    Article  Google Scholar 

  41. Saccardo, P.A., Sylloge Fungorum Omnium Hucusque Cognitorum. Vol. II. Pyrenomycologiae universae. Continuatio et finis. Berlin: Iterum Impressum apud R. Friedländer, 1883.

  42. Saccardo, P.A., Sylloge Fungorum Omnium Hucusque Cognitorum. Vol. XI. Supplementum universale. Pars III. Berlin: Iterum impressum apud R. Friedländer, 1895.

  43. Saccardo, P.A., Saccardo, D., Traverso, J.B., Trotter, A., Sylloge Fungorum Omnium Hucusque Cognitorum. Vol. XXV. Supplementum Universale. Pars X. Berlin: Iterum Impressum apud R. Friedländer, 1931.

  44. Scattolini, A., Coelho, A., Torrano, C., et al., Fungi associated to Platanus x acerifolia in Uruguay and failure indicators, Agrociencia, 2023, vol. 27, pp. 989.

    Article  Google Scholar 

  45. Schmitt, U., Lüer, B., Dujesiefken, D., and Koch, G., The Massaria disease of plane trees: Its wood decay mechanism, IAWA J., 2014, vol. 35, no. 4, pp. 395–406.

    Article  Google Scholar 

  46. Tekleva, M.V. and Maslova, N.P., A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian-Turonian of Kazakhstan, Cret. Res., 2016, vol. 57, pp. 131–141.

    Article  Google Scholar 

  47. Tschan, G.F., Denk, T., and von Balthazar, M., Credneria and Platanus (Platanaceae) from the Late Cretaceous (Santonian) of Quedlinburg, Germany, Rev. Palaeobot. Palynol., 2008, vol. 152, no. 3-4, pp. 211–236.

    Article  Google Scholar 

  48. Wainio, W.W. and Forbes, E.B., The chemical composition of forest fruits and nuts from Pennsylvania, J. Agric. Res., 1941, vol. 62, pp. 627–635.

    Google Scholar 

  49. Wang, H., Dilcher, D.L., Schwarzwalder, R.N., and Kvaček, J., Vegetative and reproductive morphology of an extinct Early Cretaceous member of Platanaceae from the Braun’s Ranch Locality, Kansas, U.S.A., Int. J. Plant Sci., 2011, vol. 172, no. 1, pp. 139–157.

    Article  Google Scholar 

  50. Wang, X., Mesofossils with platanaceous affinity from the Dakota Formation (Cretaceous) in Kansas, USA, Palaeoworld, 2008, vol. 17, pp. 246–255.

    Article  Google Scholar 

  51. Wijayawardene, N.N., Hyde, K.D., Bhat, D.J., et al., Additions to brown spored coelomycetous taxa in Massarinae, Pleosporales: introducing Phragmocamarosporium gen. nov. and Suttonomyces gen. nov., Cryptogam. Mycol., 2015, vol. 2, pp. 213–224.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to their colleagues from the Borissiak Paleontological Institute, Russian Academy of Sciences (PIN RAS) and the Institute of Biology and Soil Sciences, Far Eastern Branch Russian Academy of Sciences (now the Federal Scientific Center for Biodiversity of Terrestrial Biota of East Asia, FEB RAS—FSC FEB RAS) for collecting and providing the opportunity to study fossils, D.V. Vasilenko (PIN RAS) for constructive discussion of the research results, V.M. Ionov for help in producing the map showing the localities, the reviewers A.B. Herman and M.G. Moiseeva (Geological Institute, Russian Academy of Sciences, GIN RAS) for valuable advice and recommendations.

Funding

The work was carried out within the framework of the theme of the state assignment of Lomonosov Moscow State University no. 121032300081-7 (E.Yu.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Maslova, M. V. Tekleva or E. Yu. Blagoveshchenskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N.P., Tekleva, M.V. & Blagoveshchenskaya, E.Y. First Evidence of Micromycete Damage to Infructescences of the Cretaceous Genus Friisicarpus N. Maslova et Herman (Platanaceae). Paleontol. J. 57, 692–703 (2023). https://doi.org/10.1134/S0031030123060072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030123060072

Keywords:

Navigation