Skip to main content
Log in

Rates of Origination and Extinction of Genera and the General Scheme of the Diversification of Phanerozoic Marine Animals

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The main characteristics of the origination and extinction of marine animal genera during the Phanerozoic are considered. The independence of the rates of origination and extinction of taxa is explained. The main tipping points of changes in characteristic rates are revealed and a piecewise-linear model of Phanerozoic diversification of marine animals is briefly described. The existence of mechanisms for self-regulation of the rates of origination and extinction is proved based on the evolutionary unity of biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aberhan, M., Nürnberg, S. and Kiessling, W., Vision and the diversification of Phanerozoic marine invertebrates, Paleobiology, 2012, vol. 38, no. 2, pp. 187–204. https://doi.org/10.5061/dryad.qt0c2

    Article  Google Scholar 

  2. Alekseev, A.S., Paleontological record and its properties, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Restructurings and Evolution of the Biosphere), vol. 5: Evolyutsiya taksonomicheskogo raznoobraziya (Evolution of Taxonomic Diversity), Alekseev, A.S., Dmitriev, V.Yu., and Ponomarenko, A.G., Eds., Moscow: GEOS, 2001, pp. 8–18.

  3. Alroy, J., Dynamics of origination and extinction in the marine fossil record, Proc. Nat. Acad. Sci. USA, 2008, vol. 105, suppl. 1, pp. 11536–11542. https://doi.org/10.1073/pnas.0802597105

    Article  Google Scholar 

  4. Alroy, J., Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates, in Quantitative Methods in Paleobiology. Short Course. Pap. Paleontol. Soc., Alroy, J. and Hunt, G., Eds., New Haven, CT: 2010, vol. 16, pp. 55–80. https://doi.org/10.1017/S1089332600001819

  5. Bambach, R.K., Knoll, A.H., and Wang, S.C., Origination, extinction, and mass depletions of marine diversity, Paleobiology, 2004, vol. 30, no. 4, pp. 522–542. https://doi.org/10.1666/0094-8373(2004)030,0522:OEAMDO.2.0.CO;2

    Article  Google Scholar 

  6. Benton, M.J., Diversification and extinction in the history of life, Science, 1995, vol. 268, no. 5207, pp. 52–58.

    Article  Google Scholar 

  7. Bottjer, D.J. and Ausich, W.I., Phanerozoic development of tiering in soft substrata suspension-feeding communities, Paleobiology, 1986, vol. 12, no. 4, pp. 400–420.

    Article  Google Scholar 

  8. Courtillot, V. and Gaudemer, Y., Effects of mass extinction on biodiversity, Nature, 1996, vol. 381, no. 6578, pp. 146–148. https://doi.org/10.1038/381146a0

    Article  Google Scholar 

  9. Dmitriev, V.Yu., Diversity curves, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Restructurings and Evolution of the Biosphere), vol. 5: Evolyutsiya taksonomicheskogo raznoobraziya (Evolution of Taxonomic Diversity), Alekseev, A.S., Dmitriev, V.Yu., and Ponomarenko, A.G., Eds., Moscow: GEOS, 2001, pp. 19–67.

  10. Dmitriev, V.Yu., Evolution of biodiversity: Hyperbola or exponent? Paleontol. J., 2011, vol. 45, no. 6, pp. 705–708. https://doi.org/10.1134/S0031030111060049

    Article  Google Scholar 

  11. Dmitriev, V.Yu., A complete diversity of fossils: Perspectives, Paleontol. J., 2016, vol. 50, no. 6, pp. 541–548.https://doi.org/10.1134/S003103011606006X

  12. Foote, M., Origination and extinction components of taxonomic diversity: general problems, Paleobiology, 2000, vol. 26, no. S4: Deep Time: Paleobiology’s Perspective, pp. 74–102. https://doi.org/10.1017/S0094837300026890

  13. Foote, M., Origination and extinction through the Phanerozoic: a new approach, J. Geol., 2003, vol. 111, no. 2, pp. 125–148. https://doi.org/10.1086/345841

    Article  Google Scholar 

  14. Foote, M., The geologic history of biodiversity, in Evolution Since Darwin: the First 150 Years, Bell, M.A., Futuyma, D.J., Eanes, W.F., Levinton, J.S., Eds., Sunderland, MA: Sinauer, 2010, pp. 479–510.

  15. Geologic Time Scale 2020, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., Eds., Elsevier, 2020, vols. 1, 2. https://doi.org/10.1016/C2020-1-02369-3

  16. Gilinsky, N.L., Volatility and the phanerozoic decline of background extinction intensity, Paleobiology, 1994, vol. 20, no. 4, pp. 445–458. https://doi.org/10.1017/s0094837300012926

    Article  Google Scholar 

  17. Hawkins, A.D., Kowalewski, M., and Xiao, S., Breaking down the lithification bias: the effect of preferential sampling of larger specimens on the estimate of species richness, evenness, and average specimen size, Paleobiology, 2018, vol. 44, no. 2, pp. 326–345. https://doi.org/10.1017/pab.2017.39

    Article  Google Scholar 

  18. Jablonski, D., Roy, K., Valentine, J. W., et al., The impact of the Pull of the Recent on the history of marine diversity, Science, 2003, vol. 300, no. 5622, pp. 1133–1135. https://doi.org/10.1126/science.1083246

    Article  Google Scholar 

  19. Landi, P., Minoarivelo, H.O., Brännström, E., et al., Complexity and stability of ecological networks: a review of the theory, Popul. Ecol., 2018, vol. 60, no. 4, pp. 319–345. https://doi.org/10.1007/s10144-018-0628-3

    Article  Google Scholar 

  20. Markov, A.V., A new approach to modeling the diversity dynamics of Phanerozoic marine biota, Zh. Obshch. Biol., 2001, vol. 62, no. 6, pp. 460–471.

    Google Scholar 

  21. Markov, A.V., Alpha diversity of Phanerozoic marine communities positively correlates with longevity of genera, Paleobiology, 2009, vol. 35, no. 2, pp. 231–250. https://doi.org/10.1666/07077.1

    Article  Google Scholar 

  22. Markov, A.V. and Korotaev, A.V., The Dynamics of Phanerozoic marine animal diversity agrees with the hyperbolic growth model, Zh. Obshch. Biol., 2007a, vol. 68, no. 1, pp. 3–18.

    Google Scholar 

  23. Markov, A.V. and Korotayev, A.V., Phanerozoic marine biodiversity follows a hyperbolic trend, PalaeoWorld, 2007b, vol. 16, no. 4, pp. 311–318. https://doi.org/10.1016/j.palwor.2007.01.002

    Article  Google Scholar 

  24. Markov, A.V. and Korotaev, A.V., Giperbolicheskii rost v zhivoi prirode i obshchestve (Hyperbolic Growth in Animate Nature and Social Community), Moscow: URSS, 2009.

  25. Marshall, C.R., Explaining the Cambrian “Explosion” of animals, Ann. Rev. Earth Planet. Sci., 2006, vol. 34, pp. 355–384. https://doi.org/10.1146/annurev.earth.33.031504.103001

    Article  Google Scholar 

  26. Martinez, N.D., Constant connectance in community food webs, Am. Nat., 1992, vol. 139, no. 6, pp. 1208–1218. https://doi.org/10.1086/285382

    Article  Google Scholar 

  27. Peters, S.E., Genus extinction, origination, and the durations of sedimentary hiatuses, Paleobiology, 2006, vol. 32, no. 3, pp. 387–407. https://doi.org/10.1666/05081.1

    Article  Google Scholar 

  28. Rasmussen, C.M.Ø., Kröger, B., Nielsen, M.L., and Colmenar, J., Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions, Proc. Nat. Acad. Sci. USA, 2019, vol. 116, no. 15, pp. 7207–7213. https://doi.org/10.1073/pnas.1821123116

    Article  Google Scholar 

  29. Raup, D.M., Species diversity in the Phanerozoic: an interpretation, Paleobiology, 1976, vol. 2, no. 4, pp. 289–297. https://doi.org/10.1017/S0094837300004929

    Article  Google Scholar 

  30. Raup, D.M., Biases in the fossil record of species and genera, Bull. Carnegie Mus. Natur. Hist., 1979, no. 13, pp. 85–91.

  31. Raup, D.M. and Sepkoski, J.J., Jr., Mass extinctions in the marine fossil record, Science, 1982, vol. 215, no. 4539, pp. 1501–1503. https://doi.org/10.1126/science.215.4539.1501

    Article  Google Scholar 

  32. Sepkoski J.J., Jr., Rates of speciation in the fossil record, Philos. Trans. R. Soc., B, 1998, vol. 353, no. 1366, pp. 315–326. https://doi.org/10.1098/rstb.1998.0212

    Article  Google Scholar 

  33. Sepkoski, J.J., Jr. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria, Paleobiology, 1979, vol. 5, no. 3, pp. 222–251. https://doi.org/10.1017/S0094837300006539

    Article  Google Scholar 

  34. Sepkoski, J.J., Jr., A Compendium of Fossil Marine Animal Genera, Bull. Am. Paleontol., 2002, no. 363, pp. 1–560.

  35. Tyrrell, T., On Gaia a Critical Investigation of the Relationship Between Life and Earth, Princeton, NJ: Princeton Univ. Press, 2013. https://doi.org/10.1515/9781400847914

    Book  Google Scholar 

  36. Van Valen, L. A resetting of Phanerozoic community evolution, Nature, 1984, vol. 307, no. 5, pp. 50–52. https://doi.org/10.1038/307050a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Dmitriev.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by A. Madison

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, V.Y. Rates of Origination and Extinction of Genera and the General Scheme of the Diversification of Phanerozoic Marine Animals. Paleontol. J. 56, 471–477 (2022). https://doi.org/10.1134/S0031030122050069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030122050069

Keywords:

Navigation