Skip to main content
Log in

Early Evolution of Beetles of the Suborder Polyphaga (Insecta: Coleoptera) at the Permian–Triassic Boundary

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

A brief overview of the research history of the early stages of Polyphaga evolution is given. Reasons for the unparalleled evolutionary success of Polyphaga, which allowed them to become the dominant suborder from the Early Cretaceous to the present time, is analyzed on the basis of published data. Morphology of early findings of crown group beetles (family Ademosynidae, genera Archosyne Ponomarenko et al., 2014 and Ponomarenkium Yan et al., 2018) from the Middle and Late Permian and Triassic (family Peltosynidae) are evaluated morphologically, and their key apomorphies are highlighted. Phylogenetic hypotheses based on molecular analysis, which aimed at reconstructing the appearance and lifestyle of the earliest Polyphaga, are evaluated. Basal branching is shown in Polyphaga, which produced a wide spectrum of forms, no less than in other infraorder-level taxa of Holometabola, and helped them to survive three out of the five mass extinctions of Phanerozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Beattie, R.G., The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia, Afr. Invertebr., 2007, vol. 48, pp. 41–57.

    Google Scholar 

  2. Bernhardt, P., Convergent evolution and adaptive radiation of beetle-pollinated angiosperms, Plant Syst. Evol., 2000, vol. 222, pp. 293–320.

    Article  Google Scholar 

  3. Beutel, R.G., Über phylogenese und evolution der Coleoptera (Insecta), insbesondere der Adephaga, Verhandl. Naturwiss. Ver. Hamburg (NF), 1997, vol. 31, pp. 1–164.

    Google Scholar 

  4. Beutel, R.G. and Haas, F., Phylogenetic relationships of the suborders of Coleoptera (Insecta), Cladistics, 2000, vol. 16, pp. 103–141. https://doi.org/10.1006/clad.1999.0124

    Article  Google Scholar 

  5. Beutel, R.G., Ge, S.Q., and Hörnschemeyer, T., On the head morphology of tetraphalerus, the phylogeny of archostemata and the basal branching events in coleoptera, Cladistics, 2008, vol. 24, pp. 270–298. https://doi.org/10.1111/j.1096-0031.2007.00186.x

    Article  Google Scholar 

  6. Bocak, L., Barton, C., Crampton-Platt, A., et al., Building the Coleoptera tree-of-life for >8000 species: Composition of public DNA data and fit with Linnaean classification, Syst. Entomol., 2014, vol. 39, pp. 97–110. https://doi.org/10.1111/syen.12037

    Article  Google Scholar 

  7. Booth, R.G., Cox, M.L., and Madge, R.B., Guides to Insects of Importance to Man, Vol. 3: Coleoptera, London: Int. Inst. Entomol. (C.A.B. Int.), 1990.

  8. Buchwitz, M., Taxonomy, phylogeny, and palaeobiology of the Madygen Tetrapod Fauna, Thesis, Freiberg, TU Bergakademie, 2011 (unpublished).

  9. Cai, C.Y., Lawrence, J.F., Slipinski, A., and Huang, D.Y., First fossil tooth-necked fungus beetle (Coleoptera: Derodontidae): Juropeltastica sinica gen. n. sp. n. from the Middle Jurassic of China, Eur. J. Entomol., 2014, vol. 111, pp. 299–302.

    Article  Google Scholar 

  10. Cai, C., Escalona, H.E., Li, L., et al., Beetle pollination of cycads in the Mesozoic, Curr. Biol., 2018, vol. 28, pp. 1–7. https://doi.org/10.1016/j.cub.2018.06.036

    Article  Google Scholar 

  11. Calderón-Cortés, N., Watanabe, H., Cano-Camacho, H., et al., cDNA cloning, homology modelling and evolutionary insights into novel endogenous cellulases of the borer beetle Oncideres albomarginata Chamela (Cerambycidae), Insect Mol. Biol., 2010, vol. 19, pp. 323–336. https://doi.org/10.1111/j.1365-2583.2010.00991.x

    Article  Google Scholar 

  12. Costello, M.J., Wilson, S., and Houlding, B., Predicting total global species richness using rates of species description and estimates of taxonomic effort, Syst. Biol., 2012, vol. 61, pp. 871–883. https://doi.org/10.1093/sysbio/syr080

    Article  Google Scholar 

  13. Crowson, R.A., The phylogeny of Coleoptera, Ann. Rev. Entomol., 1960, vol. 5, pp. 111–134.

    Article  Google Scholar 

  14. Crowson, R.A., Observations on the beetle family Cupedidae, with description of two new fossil forms and a key to the recent genera, Ann. Mag. Nat. Hist. 13 Ser., 1962, vol. 51, pp. 147–157. https://doi.org/10.1080/00222936208651227

  15. Crowson, R.A., The evolutionary history of coleoptera as documented by fossil and comparative evidence, in Atti del Congr. Nazionale Italiano di Entomologia, Sassari, Maggio, 20–25, 1974, Firenze, 1975, pp. 47–90.

  16. Crowson, R.A., The Biology of the Coleoptera, New York: Academic, 1981, vol. 1.

    Google Scholar 

  17. Farrell, B.D., “Inordinate fondness” explained: why are there so many beetles? Science, 1998, vol. 281, pp. 555–559. https://doi.org/10.1126/science.281.5376.555

    Article  Google Scholar 

  18. Feng, Z., Wang, J., Rößler, R., et al., Late Permian wood-borings reveal an intricate network of ecological relationships, Nat. Commun., 2017, vol. 8, no. 556, pp. 1–6. https://doi.org/10.1038/s41467-017-00696-0

    Article  Google Scholar 

  19. Feng, Z., Bertling, M., Noll, R., et al., Beetle borings in wood with host response in early Permian conifers from Germany, Paläontol. Z., 2019, vol. 93, no. 3, pp. 409–421. https://doi.org/10.1007/s12542-019-00476-9

  20. Fikáček, M., Beutel, R.G., Cai, C., et al., Reliable placement of beetle fossils via phylogenetic analyses—Triassic Leehermania as a case study (Staphylinidae or Myxophaga?), Syst. Entomol., 2019, vol. 45, pp. 175–187. https://doi.org/10.1111/syen.12386

    Article  Google Scholar 

  21. Franeck, F., Schneider, J.W., Fischer, J., et al., Microvertebrate remains from the non-marine Triassic Madygen Formation of Kyrgyzstan, in Thesis of Centenary Meeting of the Paläontologische Gesellschaft: Programme, Abstracts, and Field Guides (September 24–29, 2012), Berlin: Alfred-Wegener Stiftung, 2012, vol. 3, pp. 57–58.

  22. Friedrich, F., Farrell, B.D., and Beutel, R.G., The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda), Cladistics, 2009, vol. 25, pp. 1–37.

    Article  Google Scholar 

  23. Grimaldi, D. and Engel, M.S., Evolution of the Insects, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  24. Hong, Y.C., Fossil insects of the southern Ordos Basin, Acta Geol. Gansu, 1995, vol. 4, no. 1, pp. 1–13.

    Google Scholar 

  25. Hörnschemeyer, T. and Beutel, R.G., Ommatidae Sharp & Miur, 1912, in Handbook of Zoology, Vol. IV: Arthropoda: Insecta, Pt. 38: Coleoptera, Beetles, Vol. 3: Morphology and Systematics (Phytophaga), Leschen, R.A.B. and Beutel, R.G., Eds., Berlin: Walter de Gruyter, 2016, pp. 52–57.

  26. Hörnschemeyer, T. and Yavorskaya, M., Cupeididae Laporte, 1836, in Handbook of Zoology, Vol. IV: Arthropoda: Insecta, Pt. 38: Coleoptera, Beetles, Vol. 3: Morphology and Systematics (Phytophaga), Leschen, R.A.B. and Beutel, R.G., Eds., Berlin: Walter de Gruyter, 2016, pp. 44–48.

  27. Huang, D.Y., Nel, A., Lin, Q.B., and Dong, F.B., The first Glosselytrodea (Insecta) from the latest middle Permian of Anhui Province, China, Bull. Soc. Entomol. France, 2007, vol. 112, no. 2, pp. 179–182.

    Article  Google Scholar 

  28. Hunt, T., Bergsten, J., Levkanicova, Z., et al., A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation, Science, 2007, vol. 318, pp. 1913–1916. https://doi.org/10.1126/science.1146954

    Article  Google Scholar 

  29. Johnson, A.J., McKenna, D.D., Jordal, B.H., et al., Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae), Mol. Phylogenet. Evol., 2018, vol. 127, pp. 229–238. https://doi.org/10.1016/j.ympev.2018.05.028

  30. Kaddumi, H.F., Amber of Jordan, in The Oldest Prehistoric Insects in Fossilized Resin, Amman: Eternal River Mus. Nat. Hist., 2007.

    Google Scholar 

  31. Kasap, H. and Crowson, R.A., A comparative anatomical study of Elateriformia and Dascilloidea, Trans. R. Entomol. Soc. London, 1975, vol. 126, pp. 441–495. https://doi.org/10.1111/j.1365-2311.1975.tb00858.x

    Article  Google Scholar 

  32. Kirejtshuk, A.G. and Ponomarenko, A.G., A new coleopterous family Mesocinetidae fam. nov. (Coleoptera: Scirtoidea) from Late Mesozoic and notes on fossil remains from Shar-Teg (Upper Jurassic, South-Western Mongolia), Zoosyst. Ross., 2010, vol. 19, no. 2, pp. 301–325.

    Article  Google Scholar 

  33. Kirsch, R., Gramzow, L., Theißen, G., et al., Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles, Insect Biochem. Mol. Biol., 2014, vol. 52, pp. 33–50. https://doi.org/10.1016/j.ibmb.2014.06.008

    Article  Google Scholar 

  34. Knight, O. and Le, M., Fossil insect beds of Belmont, NSW, Rec. Aust. Mus., 1950, vol. 22, pp. 251–254.

    Article  Google Scholar 

  35. Kozur, H.W. and Weems, R.E., Detailed correlation and age of continental late Changhsingian and earliest Triassic beds: implications for the role of the Siberian Trap in the Permian-Triassic biotic crisis, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 308, pp. 22–40. https://doi.org/10.1016/j.palaeo.2011.02.020

    Article  Google Scholar 

  36. Kukalová-Peck, J. and Lawrence, J.F., Evolution of the hind wing in Coleoptera, Can. Entomol., 1993, vol. 125, pp. 181–258. https://doi.org/10.4039/Ent125181-2

    Article  Google Scholar 

  37. Kukalová-Peck, J. and Lawrence, J.F., Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters, Eur. J. Entomol., 2004, vol. 101, pp. 95–144.

    Article  Google Scholar 

  38. Lawrence, J.F., The Australian Ommatidae (Coleoptera: Archostemata): New species, larva and discussion of relationships, Invertebr. Taxon., 1999, vol. 13, pp. 369–390.

    Article  Google Scholar 

  39. Lawrence, J.F. and Newton, A.F., Evolution and classification of beetles, Ann. Rev. Ecol. Syst., 1982, vol. 13, pp. 261–290. https://doi.org/10.1146/annurev.es.13.110182.001401

    Article  Google Scholar 

  40. Lawrence, J.F., Slipiński, A., Seago, A.E., et al., Phylogeny of the Coleoptera based on morphological characters of adults and larvae, Ann. Zool. (Warszawa), 2011, vol. 61, no. 1, pp. 1–217. https://doi.org/10.3161/000345411X576725

    Article  Google Scholar 

  41. Leschen, R.A.B., Evolutionary patterns of feeding in selected Staphylinoidea (Coleoptera): Shifts among food textures, in Functional Morphology of Insect Feeding, Schaefer, C.W., Leschen, R.A.B., and Lanham, M.D., Eds., Th. Say Publ. Entomol., Entomol. Soc. Am., 1993, pp. 59–104.

    Google Scholar 

  42. Leschen, R.A.B. and Buckley, T.R., Multistate characters and diet shifts: Evolution of Erotylidae (Coleoptera), Syst. Biol., 2007, vol. 56, pp. 97–112. https://doi.org/10.1080/10635150701211844

    Article  Google Scholar 

  43. Lin, Q.B., Nel, A., and Huang, D.Y., The first agetopanorpine mecopteroid insect from Middle Permian of China (Insecta: Mecoptera: Permochoristidae), Ann. Soc. Entomol. Fr. (N.S.), 2010, vol. 46, nos. 1–2, pp. 62–66. https://doi.org/10.1080/00379271.2010.10697639

  44. Liu, Z., Ślipiński, A., Lawrence, J.F., et al., Palaeoboganium gen. nov. from the middle Jurassic of China (Coleoptera: Cucujoidea: Boganiidae): the first cycad pollinators? J. Syst. Palaeontol., 2018, vol. 16, pp. 351–360. https://doi.org/10.1080/14772019.2017.1304459

    Article  Google Scholar 

  45. Lozovsky, V. and Korchagin, O., The Permian period ended with the impact of a “Siberia” comet on earth, Bull. N. M. Mus. Nat. Hist. Sci., 2013, vol. 60, pp. 224–229.

    Google Scholar 

  46. McKenna, D.D., Molecular phylogenetics and evolution of Coleoptera, in Handbook of Zoology, Vol. IV: Arthropoda: Insecta, Pt. 38: Coleoptera, Beetles, Vol. 3: Morphology and Systematics (Phytophaga), Leschen, R.A.B. and Beutel, R.G., Eds., Berlin: Walter de Gruyter, 2016, pp. 1–11.

  47. McKenna, D.D. and Farrell, B.D., Tropical forests are both evolutionary cradles and museums of leaf beetle diversity, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 1047–1051. https://doi.org/10.1073/pnas.0602712103

    Article  Google Scholar 

  48. McKenna, D.D. and Farrell, B.D., Beetles (Coleoptera), in The Timetree of Life, Hedges, S.B. and Kumar, S., Eds., Oxford: Oxford Univ. Press, 2009, pp. 278–289.

    Google Scholar 

  49. McKenna, D.D., Wild, A.L., Kanda, K., et al., The beetle tree of life reveals Coleoptera survived end Permian mass extinction to diversify during the cretaceous terrestrial revolution, Syst. Entomol., 2015, vol. 40, pp. 835–880. https://doi.org/10.1111/syen.12132

    Article  Google Scholar 

  50. McKenna, D.D., Shin, S., Ahrens, D., et al., The evolution and genomic basis of beetle diversity, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 49, pp. 24729–24737. https://doi.org/10.1073/pnas.1909655116

    Article  Google Scholar 

  51. Misof, M., Liu, S., Meusemann, K., et al., Phylogenomics resolves the timing and pattern of insect evolution, Science, 2014, vol. 346, pp. 763–767.

    Article  Google Scholar 

  52. Naomi, S.I., Comparative morphology of the Staphylinidae and the allied groups (Coleoptera, Staphylinoidea), Japan J. Entomol., 1987, vol. 55, pp. 450–458.

    Google Scholar 

  53. Naugolnykh, S.V. and Ponomarenko, A.G., Possible traces of feeding by beetles in coniferophyte wood from the Kazanian of the Kama River basin, Paleontol. J., 2010, vol. 44, no. 4, pp. 468–474.

    Article  Google Scholar 

  54. Oberprieler, R.G., Marvaldi, A.E., and Anderson, R.S., Weevils, weevils, weevils everywhere, Zootaxa, 2007, vol. 1668, no. 1, pp. 491–520. https://doi.org/10.11646/zootaxa.1668.1.24

    Article  Google Scholar 

  55. Papier, F., Nel, A., Grauvogel-Stamm, L., and Gall, J.C., La diversité des Coleoptera (Insecta) du Trias dans le nordest de la France, Geodiversitas, 2005, vol. 27, no. 2, pp. 181–199.

    Google Scholar 

  56. Peris, D., Pérez-de la Fuente, R., Penalver, E., et al., False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance, Curr. Biol., 2017, vol. 27, pp. 897–904. https://doi.org/10.1016/j.cub.2017.02.009

    Article  Google Scholar 

  57. Ponomarenko, A.G., Archostemata beetles from the Jurassic of the Kara-Tau, in Yurskie nasekomye Karatau (Jurassic Insects of the Kara-Tau), Rodendorf, B.B., Ed., Moscow: Nauka, 1968, pp. 118–138.

  58. Ponomarenko, A.G., Historical development of Archostemata (Coleoptera), in Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 125, Moscow: Nauka, 1969.

  59. Ponomarenko, A.G., Composition and ecological characteristics of Mesozoic Coleoptera, Suborder Adephaga, Infraorder Staphyliformia, in Mezozoiskie zhestkokrylye (Mesozoic Coleoptera), Rodendorf, B.B., Ed., Tr. Paleontol. Inst. Akad. Nauk SSSR, Moscow: Nauka, 1977, vol. 161, pp. 8–119.

  60. Ponomarenko, A.G., Historical development of Coleoptera, Doctoral (Biol.) Dissertation, Moscow, 1983.

  61. Ponomarenko, A.G., Superorder Scarabaeida Laicharting, 1781. Order Coleoptera Linne, 1758. The beetles, in History of Insects, Rasnitsyn, A.P. and Quicke, D.L.J., Eds., Dordrecht: Kluwer Acad., 2002, pp. 167–176.

    Google Scholar 

  62. Ponomarenko, A.G., Ecological evolution of beetles (Insecta: Coleoptera), Acta Zool. Cracov., 2003, vol. 46, suppl. (Fossil Insects), pp. 319–328.

  63. Ponomarenko, A.G., Beetles (Insecta, Coleoptera) of the Late Permian and Early Triassic, Paleontol. J., 2004, vol. 38 (suppl.), no. 2, pp. 185–196.

  64. Ponomarenko, A.G., Insects during the time around the Permian–Triassic Crisis, Paleontol. J., 2016, vol. 50, no. 2, pp. 174–186.

    Article  Google Scholar 

  65. Ponomarenko, A.G., Yan, E.V., and Huang Di-ying, New beetles (Coleoptera) from the terminal Middle Permian of China, Paleontol. J., 2014, vol. 48, no. 2, pp. 191–200.

    Article  Google Scholar 

  66. Rainford, J.L. and Mayhew, P.J., Diet evolution and clade richness in Hexapoda: a phylogenetic study of higher taxa, Am. Nat., 2015, vol. 186, pp. 777–791. https://doi.org/10.1086/683461

    Article  Google Scholar 

  67. Riek, E.F., Undescribed fossil insects from the Upper Permian of Belmont, New South Wales (with an appendix listing the described species), Rec. Aust. Mus., 1968, vol. 27, pp. 303–310.

    Article  Google Scholar 

  68. Robertson, J.A., Slipinski, A., Moulton, M., et al., Phylogeny and classification of cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia), Syst. Entomol., 2015, vol. 40, pp. 745–778. https://doi.org/10.1111/syen.12138

    Article  Google Scholar 

  69. Sadovnikov, G.N., Evolution of the biome of the Middle Siberian Trappean Plateau, Paleontol. J., 2016, vol. 50, no. 5, pp. 518–532.

    Article  Google Scholar 

  70. Sadovnikov, G.N. and Orlova, E.F., The Taimyr stage is the terminal stage of the continental Permian, Dokl. Akad. Nauk, 1994, vol. 338, no. 5, pp. 658–661.

    Google Scholar 

  71. Sikstel, T.A., Flora of the late Permian and early Triassic of southern Fergana, in Stratigrafiya i paleontologiya Uzbekistana i sopredelennykh raionov (Stratigraphy and Paleontology of Uzbekistan and Adjacent Areas), Tashkent: Akad. Nauk UzSSR, 1962, vol. 1, pp. 284–414.

  72. Sikstel’, T.A., Triassic higher plants of Soviet Asia, in Tez. Dokl. Mezhved. soveshch. po kontinental’nym otlozheniyam mezozoya i kainozoya Sovetskoi Azii i ikh biostratigrafii (3–5 fevralya 1965 g.) (Interdepartmental Meeting on Continental Deposits of the Mesozoic and Cenozoic of Soviet Asia and Their Biostratigraphy (February 3–5, 1965), Abstracts of Papers), Leningrad, 1965, pp. 19–20.

  73. Ślipiński, S.A., Leschen, R.A.B., and Lawrence, J.F., Order Coleoptera Linnaeus, 1758, in Animal Biodiversity: an Outline of Higher-level Classification and Survey of Taxonomic Richness, Zhang, Z.-Q., Ed., Auckland: Magnolia Press, 2011, pp. 203–208 (Zootaxa, vol. 3148).

  74. Stork, N.E., McBroom, J., Gely, C., and Hamilton, A.J., New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 7519–7523. https://doi.org/10.1073/pnas.1502408112

    Article  Google Scholar 

  75. Tillyard, R.J., Upper Permian Coleoptera and a new order from the Belmont beds, New South Wales, Proc. Linn. Soc. New South Wales, 1924, vol. 49, pp. 429–435.

    Google Scholar 

  76. Volkov, A.N., Fossil beetles of the Babii Kamen locality (Permian–Triassic of Kuzbass), in Sovremennaya paleontologiya: klassicheskie i noveishie metody (Modern Paleontology: Classical and Latest Methods), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2012, pp. 49–53.

  77. Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., et al., Episodic radiations in the fly tree of life, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 5690–5695. https://doi.org/10.1073/pnas.1012675108

    Article  Google Scholar 

  78. Yan, E.V., Ponomarenko, A.G., Beattie, R., and Wang, B., Beetle body fossils and new elytra from the Upper Permian of New South Wales, in Proc. 6th Int. Congr. on Fossil Insects, Arthropods and Amber, Lebanon: Byblos, 2013, p. 31.

  79. Yan, E.V., Lawrence, J.F., Beattie, R., and Beutel, R.G., At the dawn of the great rise: Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Later Permian beetle from the Southern Hemisphere, J. Syst. Palaeontol., 2017, vol. 16, no. 7, pp. 611–619. https://doi.org/10.1080/14772019.2017.1343259

    Article  Google Scholar 

  80. Yan, E.V., Beutel, R.G., Beattie, R., and Lawrence, J.F., Ponomarenkium gen. nov., a replacement name for the stem group beetle Ponomarenkia Yan et al., 2017 (Insecta: Coleoptera), Paleontol. J., 2018a, vol. 52, no. 2, p. 220. https://doi.org/ 10.1134/S0031030118020156

    Article  Google Scholar 

  81. Yan, E.V., Beutel, R.G., and Lawrence, J.F., Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction, BMC Evol. Biol., 2018b, vol. 18, no. 33, pp. 1–10. https://doi.org/10.1186/s12862-018-1139-8

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research (project no. 20-14-50499).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Yan or O. D. Strelnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, E.V., Strelnikova, O.D. Early Evolution of Beetles of the Suborder Polyphaga (Insecta: Coleoptera) at the Permian–Triassic Boundary. Paleontol. J. 56, 268–279 (2022). https://doi.org/10.1134/S0031030122030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030122030169

Keywords:

Navigation