Skip to main content
Log in

Sea Lilies in Spring: Crinoid Diversification during the Early Ordovician

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The many Early Ordovician crinoid discoveries over the past 30 years signal a largely undocumented crinoid radiation. The new crinoid diversity totals more than five times the previous known Early Ordovician list as of the year 2000. Camerate, cladid, and disparid clades had emerged by the second half of the Tremadocian Series, early during this time. Many key crinoid features such as their distinctive arms and standard cup plating originated by the end of the Early Ordovician, the Floian Stage. These new finds will provide data for character analysis in phylogenetic reconstructions, particularly those aimed at identifying early branching within the crinoid tree. Early Ordovician crinoids were among the earliest-known benthic invertebrates to exploit food resources high above the substrate. Significantly, they were also among the largest known faunal elements during this time. A tentative listing of Early Ordovician crinoids and their distributions is provided; this compendium is subdivided into time slices with Laurentian and global stratigraphic units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ausich, W.I., Crinoids of the Al Rose Formation (Early Ordovician, Inyo County, California, U.S.A), Alcheringa, 1986, vol. 10, pp. 217–224.

    Article  Google Scholar 

  2. Adrain, J.M., McAdams, N.E.B., and Westrop, S.R., Trilobite stratigraphy and revised bases of the Tulena and Blackhillsian Stages of the Ibexians Series, Lower Ordovician, Western United States, Memoirs of the Association of Australasian Palaeontologists, 2009, vol. 37, pp. 541–610.

    Google Scholar 

  3. Adrain, J.M., Westrop, S.R., Karim, T.S., and Landing, E., Trilobite stratigraphy of the Stairsian Stage (upper Tremadocian ) of the Ibexian Series, Lower Ordovician, Western United States, Memoirs of the Association of Australasian Palaeontologists, 2014, vol. 45, pp. 167–214.

    Google Scholar 

  4. Blakey, D., Deep Time Maps–maps of ancient Earth. https://deeptimemaps.com/. Accessed February 3, 2020.

  5. Carpenter, P.H., Oral and apical systems of crinoids, Q. J. Microsc. Sci., 1879, vol. 8, pp. 351–383.

    Google Scholar 

  6. Church, S.B., Lower Ordovician patch reefs in Western Utah, Brigham Young Univ. Geol. Stud., 1974, vol. 21, pp. 41–62.

    Google Scholar 

  7. Dattilo, B.F., The Lower Ordovician Fillmore Formation of Western Utah; storm-dominated sedimentation on a passive margin, Brigham Young Univ. Geol. Stud., 1993, vol. 39, pp. 71–100.

    Google Scholar 

  8. David, B. and Mooi, R., Comprendre les échinodermes: la contribution du modèle extraxial-axial, Bull. Soc. Géol. Fr., 1999, vol. 170, pp. 91–101.

    Google Scholar 

  9. Donovan, S.K. and Cope, C.W., A new camerate crinoid from the Arenig of south Wales, Palaeontology, 1989, vol. 32, pp. 101–107.

    Google Scholar 

  10. Durham, J.W., Camptostroma, and Early Cambrian supposed scyphozoan referable to Echinodermata, J. Paleontol., 1966, vol. 40, pp. 1216–1220.

    Google Scholar 

  11. Edwards, C.T., Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): A review, Paleoworld, 2019, vol. 28, pp. 37–50.

    Article  Google Scholar 

  12. Gahn, F., Homological and phylogenetic implications of a disparid-like posterior interray among lower Ordovician camerate crinoids, in Progress in Echinoderm Paleobiology, Zamora, S. and Rabano, I., Eds., Instituto Geologico y Minero de Espana, Cuadermos del Museo Geominero, 2015, vol. 19, pp. 59–65.

  13. Guensburg, T.E., Alphacrinus new genus and the origin of the disparid clade, J. Paleontol., 2010, vol. 84, pp. 1209–1216.

    Article  Google Scholar 

  14. Guensburg, T.E., Phylogenetic implications of the oldest crinoids, J. Paleontol., 2012, vol. 86, pp. 455–461.

    Article  Google Scholar 

  15. Guensburg, T.E. and Sprinkle, J., Rise of echinoderms in the Paleozoic Evolutionary Fauna, Geology, 1992, vol. 20, pp. 407–410.

    Article  Google Scholar 

  16. Guensburg, T.E. and Sprinkle, J., The oldest known crinoids and a new crinoid plate homology system, Bull. Am. Paleontol., 2003, vol. 364, pp. 1–43.

    Google Scholar 

  17. Guensburg, T.E. and Sprinkle, J., Solving the mystery of crinoid ancestry: New fossil evidence of arm origin and development, J. Paleontol., 2009, vol. 83, pp. 350–364.

    Article  Google Scholar 

  18. Guensburg, T.E. and Waisfeld, B., South America’s earliest (Ordovician, Floian) crinoids, J. Paleontol., 2015, vol. 89, pp. 622–630.

    Article  Google Scholar 

  19. Guensburg, T.E., Sprinkle, J., Mooi, R., Lefebvre, B., David, B., Roux, M., and Derstler, K., Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution, J. Paleontol., 2019. online version: https://doi.org/10.1017/jpa.2019.87

  20. Hicks, H.L., On the Tremadoc rocks in the neighborhood of St. David’s, south Wales, and their fossil contents, Q. J. Geol. Soc. London, 1873, vol. 29, pp. 39–52.

    Article  Google Scholar 

  21. Jobson, L. and Paul, C.R.C., Compagicrinus fenestratus, a new Lower Ordovician inadunate crinoid from North Greenland, Rapport Geologiske Undersøgelse, 1979, vol. 91, pp. 71–81.

    Article  Google Scholar 

  22. Kelly, S.M. and Ausich, W.I., A new Lower Ordovician (Middle Canadian) disparid crinoid from Utah, J. Paleontol., 1978, vol. 52, pp. 916–920.

    Google Scholar 

  23. Kelly, S.M. and Ausich, W.I., A new name for the Lower Ordovician crinoid Pogocrinus Kelly and Ausich, J. Paleontol., 1979, vol. 53, p. 1433.

    Google Scholar 

  24. Lefebvre, B. and Fatka, O., Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2003, vol. 195, pp. 73–97.

    Article  Google Scholar 

  25. Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., Hunter, A.W., Nardin, E., Rozhnov, S.V., Guensburg, T.E., Touzeau, A., Noailles, F., and Sprinkle, J., Palaeobiogeography of Ordovician echinoderms, in Early Palaeozoic Biogeography and Palaeogeography, Harper, D.A.T. and Servais, T., Eds., London, Memoirs: Geological Society, 2013, vol. 38, pp. 173–198.

  26. Sprinkle, J. and Colins, D., Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia, Lethaia, 2011, vol. 31, pp. 261–282.

    Google Scholar 

  27. Sprinkle, J. and Guensburg, T.E., Origin of echinoderms in the Paleozoic evolutionary fauna; the role of substrates, Palaios, 1995, vol. 10, pp. 437–453.

    Article  Google Scholar 

  28. Sprinkle, J. and Wahlman, G.P., New echinoderms from the Early Ordovician of west Texas, J. Paleontol., 1994, vol. 68, pp. 324–338.

    Article  Google Scholar 

  29. Servais, T. and Harper, D.A.T., The Great Ordovician Biodiversification Event, Lethaia, 2018, vol. 51, pp. 151–164.

    Article  Google Scholar 

  30. Stigall, A.I., Cole, C.T., Freeman, R.L., and Rassmussen, C.M.O., Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2019, vol. 530, pp. 249–270.

    Article  Google Scholar 

  31. Strimple, H.L. and McGinnis, M., A new camerate crinoid from the Al Rose Formation, Lower Ordovician of California, J. Paleontol., 1972, vol. 46, pp. 72–74.

    Google Scholar 

  32. Ubaghs, G., Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoïde dicyclic connu, Univ. Kans. Paleontol. Contrib., Pap., 1969, vol. 38, pp. 1–25.

    Google Scholar 

  33. Ubaghs, G., Echinodermata, Notes sur les échinodermes de l’Ordovicien inférieur de la Montagne Noire (France), in Calymenina, Echinodermata et Hyolitha de l’Ordovicien inférieur de la Montagne Noire (France méridionale), Courtessole, R., Marek, L., Pillet, J., Ubaghs, G., and Vizcaïno, D., Eds., Mémoire de la Société d‘Etudes Scientifiques de l’Aude, 33–56.

  34. Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, Geological Time Scale, v. 5.0: Geol. Soc. America, 2018. Accessed on February 20, 2020.https://doi.org/10.1130/2018

  35. Wilson, M.A., Palmer, T.J., Guensburg, T.E., Finton, C.D., and Kaufman, L.E., The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation, Lethaia, 1992, vol. 25, pp. 19–34.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Sergey Rozhnov and colleagues at the Paleontological Institute, Russian Academy of Sciences, for hosting the 10th European Echinoderm Conference, and for encouraging work on this paper. We also thank Sergey Rozhnov and Ron Parsely for constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. E. Guensburg, J. Sprinkle, R. Mooi, F. Gahn or B. Lefebvre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guensburg, T.E., Sprinkle, J., Mooi, R. et al. Sea Lilies in Spring: Crinoid Diversification during the Early Ordovician. Paleontol. J. 55, 985–992 (2021). https://doi.org/10.1134/S0031030121090045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121090045

Keywords:

Navigation