Skip to main content
Log in

The Axial Complex of Echinoderms Represents the Kidney and Is Homologous to the Hemichordate Heart-Kidney

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The question of the presence of kidneys in echinoderms is a subject of discussion. Many guides state the absence of a special excretory organ in the echinoderms. However, there is a special excretory organ (kidney) in echinoderms. It is the axial complex. The blood network of the axial complex is represented by the system of haemocoelic spaces, which lie between the folds of the coelothelium of axial coelom. This haemocoelic capillary system is an axial organ. Contractions of the heart, which is enclosed into the pericardial coelom on the aboral side of the body, provides directional movement of the blood. The heart accepts the blood from two aboral haemal rings: the gastric ring and the genital ring. Haemocoelic spaces of the axial organ are separated from the axial coelom by the basal lamina. The surface of this basal lamina from the side of coelom is covered by the coelothelial lining, which contains the podocytes and epithelial-muscle cells. The extracellular diaphragms are stretched between the processes of the podocytes. Contractions of the heart and epithelial-muscle cells create the pressure, which provides the ultrafiltration of liquid from the haemocoel to the axial coelom. The coelomic liquid with the products of excretion is removed from the axial coelom to the environment via the pores of madreporic plate. The hemichordate heart-kidney consists of the proboscis coelom, which develops from the left axocoel of tornaria, the pericardium, which develops from the right axocoel, the heart, and the so-called glomerulus, i.e., a network of haemocoelic spaces between the folds of the proboscis coelom. The fluid is filtered from the haemocoelic spaces of the glomerulus through the basal lamina, passes between the finger-like processes of the podocytes, and reaches the proboscis coelom, from which it is excreted to the environment via the coelomoduct. The axial complex of Echinodermata is an undoubted homologue of the heart-kidney of Hemichordata. It is formed from the homologous larval coeloms, has a significant similarity in the structure, and is analogous in function. Probably, the excretory organ based on the dissymmetric preoral coeloms was formed in the common ancestor of hemichordates and echinoderms. It represents the most important synapomorphy of Ambulacraria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The clade Crinozoa, which is sister to the Eleutherozoa, has many differences in the ACO structure, which deserve special consideration.

REFERENCES

  1. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., and de Rosa, R., The new animal phylogeny: reliability and implications, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 9, pp. 4453–4456.

    Article  Google Scholar 

  2. Agassiz, A., Revision of the Echini, Mem. Mus. Comp. Zool. Harvard, 1873, vol. 3, pp. 383–628.

    Google Scholar 

  3. Bachmann, S. and Goldschmid, A., Fine structure of the axial complex of Sphaerechinus granularis (Lam.) (Echinodermata: Echinoidea), Cell Tiss. Res., 1978, no. 193, pp. 107–123.

  4. Balser, E.J. and Ruppert, E.E., Structure, ultrastructure, and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord, Acta Zool. (Stockholm), 1990, no. 71, pp. 235–249.

  5. Balser, E.J. and Ruppert, E.E., Ultrastructure of axial vascular and coelomic organs in comasterid featherstars (Echinodermata: Crinoidea), Acta Zool. (Stockholm), 1993, vol. 74, no. 2, pp. 87–101.

    Article  Google Scholar 

  6. Balser, E.J., Ruppert, E.E., and Jaeckle, W.B., Ultrastructure of auricularia larval coeloms: evidence for the presence of an axocoel, Biol. Bull., 1993, vol. 185, no. 1, pp. 86–96.

    Article  Google Scholar 

  7. Bargmann, W. and von Hehn, G., Über das Axialorgan (“mysterious gland”) von Asterias rubens L., Z. Zellforsch. Mikrosk. Anat. Histochem., 1968, vol. 88, pp. 262–277.

    Article  Google Scholar 

  8. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Principles of Comparative Anatomy of Invertebrates), vol. 2: Organologiya (Organology), Moscow: Nauka, 1964.

  9. Cameron, C.B., The phylogeny of the Hemichordata and ecology of two new enteropneust species from Barkley Sound. Diss. Dr of Philosophy. Edmonton: Alberta Fall, 2000, p. 178.

  10. Cuénot, L., Anatomie, éthologie et systématique des Échinodermes, dans Traité de Zoologie, Paris: Masson et Cie Éditeurs, 1948, vol. 11, pp. 1–275.

  11. Dawydoff, C., Embranchement des Stomocordés, dans Traité de Zoologie, Grassé, P.P., Ed., Paris: Masson et Cie, 1948, vol. 11, pp. 367–532.

    Google Scholar 

  12. Dogel, V.A., Zoologiya bespozvonochnykh (Zoology of Invertebrates), Moscow: Vysshaya shkola, 1975.

  13. Ezhova, O.V., Egorova, E.A., and Malakhov, V.V., Ultrastructural evidence of the excretory function in the asteroid axial organ (Asteroidea, Echinodermata), Dokl. Biol. Sci., 2016, vol. 468, pp. 129–132.

    Article  Google Scholar 

  14. Ezhova, O.V., Lavrova, E.A., Ershova, N.A., and Malakhov, V.V., Microscopic anatomy of the axial complex and associated structures in the brittle star Ophiura robusta Ayres, 1854 (Echinodermata, Ophiuroidea), Zoomorphology, 2015, vol. 134, no. 2, pp. 247–258.

    Article  Google Scholar 

  15. Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., Microscopic anatomy of the axial complex in the starfish Asterias rubens (Echinodermata, Asteroidea), IBiol. Bull. (Moscow), 2013, vol. 40, no. 8, pp. 643–653.

    Article  Google Scholar 

  16. Ezhova, O.V. and Malakhov, V.V., Three-dimensional structure of the skeleton and buccal diverticulum of an acorn worm Saccoglossus mereschkowskii Wagner, 1885 (Hemichordata, Enteropneusta), Invertebr. Zool., 2009, vol. 6, no. 2, pp. 103–116.

  17. Ezhova, O.V. and Malakhov, V.V., Microscopic anatomy and fine structure of the skeleton–heart-kidney complex in Saccoglossus mereschkowskii (Hemichordata, Enteropneusta): 1. Stalk skeleton, Biol. Bull. (Moscow), 2010a, vol. 37, no. 8, pp. 795–806.

    Article  Google Scholar 

  18. Ezhova, O.V. and Malakhov, V.V., Microscopic anatomy and fine structure of the skeleton–heart-kidney complex in Saccoglossus mereschkowskii (Hemichordata, Enteropneusta): 2. Buccal diverticulum, Zool. Zh., 2010b, vol. 89, no. 6, pp. 643–662.

    Google Scholar 

  19. Ezhova, O.V. and Malakhov, V.V., Microscopic anatomy and fine structure of the skeleton–heart-kidney complex in Saccoglossus mereschkowskii (Hemichordata, Enteropneusta): 3. Heart and blood vessels, Zool. Zh., 2010c, vol. 89, no. 7, pp. 771–785.

    Google Scholar 

  20. Ezhova, O.V. and Malakhov, V.V., Microscopic anatomy and fine structure of the skeleton–heart-kidney complex in Saccoglossus mereschkowskii (Hemichordata, Enteropneusta). 4. Glomerulus, proboscis coelom, and proboscis coelomoduct, Zool. Zh., 2010d, vol. 89, no. 8, pp. 899–923.

    Google Scholar 

  21. Ezhova, O.V. and Malakhov, V.V., The nephridial hypothesis of the gill slit origin, J. Exp. Zool., B: Mol. Dev. Evol., 2015, vol. 324, no. 8, pp. 647–652.

    Article  Google Scholar 

  22. Ezhova, O.V., Malakhov, V.V., and Egorova, E.A., Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea), J. Morphol., 2018, vol. 279, no. 6, pp. 792–808.

    Article  Google Scholar 

  23. Fedotov, D.M., On the problem of the homology of coeloms of Echinodermata, Enteropneusta, and Chordata, Izv. Biol. Naucno-Issled. Inst. Perm. Univ., 1923, vol. 2, no. 1, pp. 1–11.

    Google Scholar 

  24. Fedotov, D.M., Zur Morphologie des axialen Organkomplexes der Echinodermen, Z. Wiss. Zool., 1924, no. 123, pp. 209–304.

  25. Furlong, R.F. and Holland, P.W.H., Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of Cyclostomes, Zool. Sci., 2002, vol. 19, no. 5, pp. 593–599.

    Article  Google Scholar 

  26. Gemmill, J.F., The development of the starfish Solaster endeca Fobes, Trans. Zool. Soc., 1912, vol. 20, no. 1, pp. 1–71.

    Article  Google Scholar 

  27. Gemmill, J.F., The development and certain points in the adult structure of the starfish Asterias rubens, Phil. Trans. R. Soc. Lond., 1914, no. 205, pp. 213–294.

  28. Gemmill, J.F., The development of the starfish Crossaster papposus Muller and Troschel, Quart. J. Microscop. Sci., 1920, vol. 64, no. 2, pp. 155–189.

    Google Scholar 

  29. Goldschmid, A., Echinodermata, in Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere, Westheide, W. and Rieger, R., Eds., Stuttgart: Gustav Fischer Verlag, 1996, pp. 778–834.

  30. Halanych, K.M., The new view of animal phylogeny, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–56.

    Article  Google Scholar 

  31. Heider, K., Zur Entwicklung von Balanoglossus clavigerus D. Ch., Zool. Anz., 1909, vol. 34, pp. 695–704.

    Google Scholar 

  32. Holland, N.D., The fine structure of the axial organ of the feather star Nemaster rubiginosa (Echinodermata: Crinoidea), Tissue Cell, 1970, vol. 2, no. 4, pp. 625–636.

    Article  Google Scholar 

  33. Hörstadius, S., Über die Entwicklung von Astropecten aurantiacus L., Pubbl. Staz. Zool. Napoli, 1939, vol. 17, no. 2, pp. 221–312.

    Google Scholar 

  34. Hyman, L.H., Smaller coelomate groups. Phylum Hemichordata, in The Invertebrates, New York: McGraw-Hill, 1959, vol. 5, pp. 72–154.

    Google Scholar 

  35. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh: iglokozhie i polukhordovye (Comparative Embryology of Invertebrates: Echinoderms and Hemichordates), Moscow: Nauka, 1978.

  36. MacBride, E.W., The development of Echinus esculentus together with some points in the development of E. miliaris and E. acutus, Phil. Trans. R. Soc. London, 1903, vol. 195, pp. 285–327.

    Google Scholar 

  37. MacBride, E.W., The development of Ophiothrix fragilis, Quart. J. Microsc. Sci., 1907, vol. 51, pp. 557–606.

    Google Scholar 

  38. Metschnikoff, E.E., Studien über die Entwickelung der Echinodermen und Nemertinen, Memoires L’Academie Imperial des Sciences de St.-Petersbourg, VII Serie, St. Petersbourg, 1869, vol. 14, no. 8.

  39. Metschnikoff, E.E., Über die Systematische Stellung von Balanoglossus, Zool. Anziger, 1881, vol. 4, pp. 153–157.

    Google Scholar 

  40. Olsen, H., The development of the brittle-star Ophiopholis aculeata with a short report on the outer hyaline layer, Bergens Mus. Arbok. Naturvitenskap, 1942, vol. 6, pp. 1–107.

    Google Scholar 

  41. Perrier, E., L’appareil circulatoire des Oursins, Arch. Zool. Exp. Gén. Ser., 1875, vol. 4, pp. 605–643.

    Google Scholar 

  42. Ridewood, W., Pterobranchia: Cephalodiscus, Natl. Antarctic Exped. Nat. Hist., Zool., 1907, vol. 2, pp. 1–67.

    Google Scholar 

  43. Runnström, S., Über die Entwicklung von Leptosynapta inhaerens (O.Fr. Müller), Bergens Mus. Årb., 1927, no. 1, pp. 1–80.

  44. Ruppert, E.E. and Balser, E.J., Nephridia in the larvae of hemichordates and echinoderms, Biol. Bull., 1986, no. 171, pp. 188–196.

  45. Ruppert, E.E. and Smith, P.R., The functional organization of filtration nephridia, Biol. Rev., 1988, no. 171, pp. 231–258.

  46. Ruppert, E.E., Fox, R.S., and Barnes, R.D., Invertebrate Zoology, Belmont: Thomson Brooks/Cole, 2004.

    Google Scholar 

  47. Schepotieff, A., Knospungsprozess und Gehäuse von Rhabdopleura, Zool. Jahrb. Abt. Anat., 1907, vol. 24, pp. 193–238.

    Google Scholar 

  48. Selenka, E., Zur Entwicklung der Holothurien (Holothuria tubulosa und Cucumaria doliolum), Ein Beitrag zur Keimblättertheorie, Zeit. Wissenschaft. Zool., 1876, vol. 27, no. 2, pp. 155–178.

    Google Scholar 

  49. Spengel, J.W., Die Enteropneusten des Golfes von Neapel, in Fauna und Flora des Golfes von Neapel, Herausgegeben von der Zoologischen Station zu Neapel, Monograph, 1893, no. 18, pp. 1–757.

  50. Stiasny-Wijnhoff, G. and Stiasny, G., Die Tornarien. Kritik der Beschreibungen und Vergleich samlicher bekannter Enteropiieustenlarren, Ergebn. Fortschr. Zool., 1927, vol. 7, pp. 38–192.

    Google Scholar 

  51. Ubaghs, G., General characters of Echinodermata, in Treatise on Invertebrate Paleontology, Part S: Echinodermata 1, The University of Kansas and The Geological Society of America, 1967, pp. 3–60.

  52. Ubisch, L., Die Entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa), Z. Wiss. Zool., 1913, no. 106, pp. 409–448.

  53. Van der Horst, C.J., Hemichordata, in Klassen und Ordnungen des Tierreichs, Bronns, H.G., Ed., Leipzig: Leipzig Akademische Verlagsgesellschaft M. B. H., 1939.

    Google Scholar 

  54. Wada, H. and Satoh, N., Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18s rDNA, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, pp. 1801–1804.

    Article  Google Scholar 

  55. Welsch, U. and Rehkamper, G., Podocytes in the axial organ of echinoderms, J. Zool. London, 1987, vol. 213, pp. 45–50.

    Article  Google Scholar 

  56. Ziegler, A., Faber, C., and Bartolomaeus, T., Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea), Front. Zool., 2009, vol. 6, no. 10, pp. 1–31.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 18-74-10025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ezhova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhova, O.V., Malakhov, V.V. The Axial Complex of Echinoderms Represents the Kidney and Is Homologous to the Hemichordate Heart-Kidney. Paleontol. J. 55, 1029–1038 (2021). https://doi.org/10.1134/S0031030121090033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121090033

Keywords:

Navigation