Skip to main content

Microbially Mediated Organomineralization in Paleozoic Carbonate Ooids


This article reports the first results of studies on microbially mediated organomineralization in carbonate ooids from the Paleozoic sections of the Timan–Northern Ural region, which were formed in different environments and had different original mineral composition (calcite, Mg-calcite, and dolomite). Using a scanning electron microscope, mineralized microbial biofilms preserved in various forms and the modified morphology of primary grains under the effect of organic acids were identified. The interrelation between microbes and organomineralization has been established, which was observed in the form of conserved nuclei of the amorphous phase of calcium carbonate on the surfaces of mineralized biofilms, including EPS relics in the composition of ooid crusts. Carbon and oxygen isotope data showed the difference in Paleozoic ooid formation from saline lagoons to open shallow sea. The Raman spectra revealed the state of structure order of carbonaceous materials (CM) ranging from amorphous to weakly ordered carbon in ooids, which enables the data on the isotope composition of ooid carbonates to be considered corresponding to their primary composition and the environmental conditions under which they were formed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Addadi, L., Raz, S., and Weiner, S., Taking advantage of disorder: amorphous calcium carbonate and its role in biomineralization, Adv. Material., 2003, vol. 15, no. 12, pp. 959–970.

    Article  Google Scholar 

  2. 2

    Aizenberg, J., Ilan, M., Weiner, S., and Addadi, L., Intracrystalline macromolecules are involved in the morphogenesis of calcitic sponge spicules, Connect. Tissue Res., 1996, vol. 34, no. 4, pp. 255‒261.

    Article  Google Scholar 

  3. 3

    Antoshkina, A.I., Palaeomicrocodium: a new view on its origin, Paleontol. J., 2014, vol. 48, no. 4, pp. 353–368.

    Article  Google Scholar 

  4. 4

    Antoshkina, A.I., Ooid-stromatolite association ‒ a stress for benthic ecosystems, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2015, no. 3, pp. 19‒25.

  5. 5

    Antoshkina, A.I., Bacteriomorph structures in nodules, a characteristic of euxinic conditions of nodule formation, Paleontol. J., 2018, vol. 52, no. 10, pp. 28–39.

    Article  Google Scholar 

  6. 6

    Antoshkina, A.I. and Shebolkin, D.N., Genetic interpretation of ooid formations (by the example of Wenlockian deposits of the southern part of Chernyshev Swell), in Geokhimiya litogeneza: Mater. Rossiisk. soveshch. s mezhdunar. uchastiem, Syktyvkar: Inst. Geol. Komi NTs Ural. Otd. Ross. Akad. Nauk, 2014, pp. 165‒168.

  7. 7

    Brehm, U., Krumbein, W.E., and Palinska, K.A., Biomicrospheres generate ooids in the laboratory, Geomicrobiol. J., 2006, vol. 23, no. 7, pp. 545–550.

    Article  Google Scholar 

  8. 8

    Burne, R.V. and Moore, L.S., Microbialites: organosedimentary deposits of benthic microbial communities, Palaios, 1987, vol. 2, no. 3, pp. 241–254.

    Article  Google Scholar 

  9. 9

    Calner, M. and Säll, E., Transgressive oolites onlapping a Silurian rocky shoreline unconformity, Gotland, Sweden, GFF, 1999, vol. 121, no. 2, pp. 91–100.

    Article  Google Scholar 

  10. 10

    Davies, P.J., Bubela, B., and Ferguson, J., Formation of ooids, Sedimentology, 1978, vol. 25, no. 5, pp. 703–730.

    Article  Google Scholar 

  11. 11

    Défarge, C., Organomineralization, Encyclopedia of Geobiology, Reitner, J. and Thiel, V., Eds., Dordrecht, the Netherlands: Springer, 2011, pp. 697–701.

    Google Scholar 

  12. 12

    Défarge, C. and Trichet, J., From biominerals to ‘organominerals’: The example of the gene diversity of modern lacustrine calcareous stromatolites from Polynesian atolls, in Proceedings 7th Int. Symp. Biomineralization. Bulletin de l’Institut Océanographique de Monaco, n° spéc., Allemand, D. and Cuif, J.P., Eds., 1995, vol. 14, no. 2, pp. 265–271.

  13. 13

    Diaz, M.R., Van Norstrand, J.D., Eberli, G.P., Piggot, A.M., Zhou, J., and Klaus, J.S., Functional diversity of oolitic sands from Great Bahama Bank, Geobiology, 2014, vol. 12, no. 3, pp. 231–249.

    Article  Google Scholar 

  14. 14

    Diaz, M., Swart, P.K., Eberli, G.P., Oehlert, A.M., Delvin, Q., Saeid, A., and Altabet, M.A., Geochemical evidence of microbial activity within ooids, Sedimentology, 2015, vol. 62, no. 7, pp. 2090–2112.

    Article  Google Scholar 

  15. 15

    Diaz, M.R., Eberli, G.P., Blackwelder, P., Phillips, B., and Swart, P.K., Microbially mediated organomineralization in the formation of ooids, Geology, 2017, vol. 45, no. 9, pp. 771‒774.

    Article  Google Scholar 

  16. 16

    Duguid, S.M.A., Kyser, T.K., James, N.P., and Rankey, E.C., Microbes and ooids, J. Sediment., 2010, vol. 80, no. 3, pp. 236‒251.

    Article  Google Scholar 

  17. 17

    Dupraz, C. and Visscher, P.T., Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol., 2005, vol. 13, no. 9, pp. 429‒438.

    Article  Google Scholar 

  18. 18

    Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., and Visscher, P.T., Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev., 2009, vol. 96, no. 3, pp. 141‒162.

    Article  Google Scholar 

  19. 19

    Ferguson, J., Bubela, B., and Davies, P.J., Synthesis and possible mechanism of formation of radial carbonate ooids, Chem. Geol., 1978, vol. 22, no. 4, pp. 285‒308.

    Article  Google Scholar 

  20. 20

    Ferrari, A.C. and Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. A Math. Phys. Eng. Sci., 2004, vol. 362, no. 1824, pp. 2477‒2512.

  21. 21

    Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Berlin, Heidelberg: Springer, 2004.

    Book  Google Scholar 

  22. 22

    Folk, R.L., Nannobacteria and the formation of framboidal pyrite, J. Earth Syst. Sci., 2005, vol. 114, no. 3, pp. 369–374.

    Article  Google Scholar 

  23. 23

    Freeman, T., Quiet water oolites from Laguna Madre Texas, J. Sediment. Petrol., 1962, vol. 32, no. 3, pp. 475–483.

    Google Scholar 

  24. 24

    Joachimski, M.M., van Geldern, R., Breisig, S., Buggisch, W., and Day, J., Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian, Int. J. Earth Sci. (Geol. Rundsch.), 2004, vol. 93, no. 4, pp. 542–553.

    Google Scholar 

  25. 25

    Jones, B. and Peng, X., Amorphous calcium carbonate associated with biofilms in hot spring deposits, Sediment. Geol., 2012, vol. 269–270, pp. 58–68.

    Article  Google Scholar 

  26. 26

    Kuleshov, V.N., Evolution of isotopic carbon dioxide-water systems in lithogenesis: Communication 1. Sedimentogenesis and diagenesis, Lithol. Miner. Resour., 2001, vol. 36, no. 5, pp. 429–444.

    Article  Google Scholar 

  27. 27

    Kump, L.R. and Hine, A.C., Ooids as sea-level indicators, Sea-Level Research, Plassche, O., Ed., 1986, pp. 175–193.

    Google Scholar 

  28. 28

    Li, F., Yan, J., Burne, R.V., Chen, Z.-Q., Algeo, T.J., Zhang, W., Tian, L., Gan, Yu., Liu, Ke., and Xie, S., Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, vol. 486, pp. 96–107.

    Article  Google Scholar 

  29. 29

    Monaghan, P.H. and Lytle, M.L., The origin of calcareous ooliths, J. Sediment. Petrol., 1956, vol. 26, no. 2, pp. 111–118.

    Google Scholar 

  30. 30

    Newell, N.D., Purdy, E.G., and Imbrie, J., Bahamian oolitic sand, J. Geol., 1960, vol. 68, no. 5, pp. 481–497.

    Article  Google Scholar 

  31. 31

    Novitsky, J.A., Calcium carbonate precipitation by marine bacteria, Geomicrobiol. J., 1981, vol. 2, no. 4, pp. 375–388.

    Article  Google Scholar 

  32. 32

    Pacton, M., Hunger, G., Martinuzzi, V., Cusminsky, G., Burdin, B., Barmettler, K., Vasconcelos, C., and Ariztegui, D., Organomineralization processes in freshwater stromatolites: A living example from eastern Patagonia, Depositional Record, 2016, vol. 1, no. 2, pp. 130–146.

    Article  Google Scholar 

  33. 33

    Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.K., Bebout, B.M., Dupraz, C., Mactintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F., and Des Marais, D.J. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 2000, vol. 406, no. 6799, pp. 989–992.

    Article  Google Scholar 

  34. 34

    O’Reilly, S.S., Mariotti, G., Winter, A.R., Newman, S.A., Matys, E.D., McDermott, F., Pruss, S.B., Bosak, T., Summons, R.E., and Klepac-Ceraj, V., Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas, Geobiology, 2017, vol. 15, no. 1, pp. 112–130.

    Article  Google Scholar 

  35. 35

    Riding, R., Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms, Sedimentology, 2000, vol. 47, no. 1, pp. 179–214.

    Article  Google Scholar 

  36. 36

    Shul’ts, S.S., Oolite formation in modern sediments of the northern part of the Caspian Sea, Inform. Sb. VSEGEI, 1962, no. 57. pp. 61–75.

  37. 37

    Skiba, N.S. and Yushkin, N.P., Calcitic oolites from the Shor-Su mine, Zap.-Kirg. Otd. Vsesoyuz. Mineral. Obscsh, 1962, no. 2. pp. 111–122.

  38. 38

    Summons, R.E., Bird, L.R., Gillespie, A.I., Pruss, S.B., Roberts, M., and Sessions, A.L., Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora, Geobiology, 2013, vol. 11, no. 5, pp. 420–436.

    Article  Google Scholar 

  39. 39

    Sumner, D.Y. and Grotzinger, J.P., Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids, J. Sediment. Petrol., 1993, vol. 63, no. 5, pp. 974–982.

    Google Scholar 

  40. 40

    Trower, E.J., Cantine, M.D., Gomes, M.L., Grotzinger, J.P., Knoll, A.H., Lamb, M.P., Lingappa, U., O’Reily, S.S., Present, T.M., Stein, NN., Strauss, J.V., and Fischer, W.W., Active ooid growth driven by sediment transport in a high-energy shoal, Little Ambergis Cay, Turks and Caicos islands, J. Sediment. Res., 2018, vol. 88, no. 9, pp. 1132–1151.

    Article  Google Scholar 

  41. 41

    Vasconcelos, C. and McKenzie, J.A., Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil), J. Sediment. Res., 1997, vol. 67, no. 3, pp. 378–390.

    Google Scholar 

Download references


We would like to express our thanks to Irina Smoleva, Vasilij Filippov, Evgenij Tropnikov, Boris Makeev, and Svetlana Zaboeva for high-quality analytical studies that contributed to the implementation of this work.


This study was supported by the Program no. 17 of the Presidium of the Russian Academy of Sciences (“The Evolution of the Organic World. The Role and Influence of Planetary Processes”) and State Program no. AAAA-A17-117121270034-3. This study was also partially supported by the Russian Foundation for Basic Research (Ural Branch, Russian Academy of Sciences), project no. 18-5-5-31.

Author information



Corresponding author

Correspondence to A. I. Antoshkina.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antoshkina, A.I., Zhegallo, E.A. & Isaenko, S.I. Microbially Mediated Organomineralization in Paleozoic Carbonate Ooids. Paleontol. J. 54, 825–834 (2020).

Download citation


  • organomineralization
  • amorphous carbonate calcium
  • EPS
  • carbonate ooids
  • Paleozoic