Skip to main content
Log in

Evolutionary Developmental Biology: the Interaction of Developmental Biology, Evolutionary Biology, Paleontology, and Genomics

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Evolutionary developmental biology (evo-devo) formed due to the interactions of evolutionary biology, paleontology, and comparative genomics, analyzes the interrelations of ontogenetic and phylogenetic processes and, primarily, the influence of changes in individual development are under genetic control, and Hox genes play a decisive role in the determination of animal’s body plan. Both genetic and epigenetic mechanisms underlie the regulation of body plan formation in ontogeny and phylogeny, and the latter mechanisms ultimately determine the animal’s phenotype. Heterochronies, which create the differences between related taxa (species and genus), play an important role in the evolutionary transformations. Data from paleontology, evolutionary biology, and genomics enabled the construction of a phylogenetic system that includes the time of divergence of evolutionary branches of different ranks, in addition to the evolutionary innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abzhanov, A., Protas, M., Grant, B.R. Grant, P.R., and Tabin, C.J., Bmp4 and morphological variation of beaks in Darwin’s finches, Science, 2004, vol. 305, no. 5689, pp. 1462–1465.

    Article  Google Scholar 

  2. Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R., and Tabin, C.J., The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches, Nature, 2006, vol. 442, pp. 563–567.

    Article  Google Scholar 

  3. Afanasjeva, G.A. and Nevesskaya, L.A., Analysis of the causes of various consequences of crisis situations illustrated by the example of hinged brachiopods and bivalves, in Sistemnye perestroiki i evolyutsiya biosfery (System Reorganizations and Evolution of the Biosphere), Moscow: Nedra, 1994, vol. 1, pp. 101–108.

  4. Alonso, M.E., Pernaute, B., Crespo, M., Gómez-Skarmeta, J.L., and Manzanares. M., Understanding the regulatory genome, Int. J. Dev. Biol., 2009, vol. 53, nos. 8–10, pp. 1367–1378.

    Article  Google Scholar 

  5. Andreeva, T.F. and Kulakova, M.A., Hox and ParaHox gene clusters: origin, structural organization, and functional significance in individual development and evolution of animals, in Kletochnye, molekulyarnye i evolyutsionnye aspekty morfogeneza (Cellular, Molecular, and Evolutionary Aspects of Morphogenesis), Moscow: Tovar. Nauchn. Izd. KMK, 2007, pp. 10–13.

  6. Aravin, A.A., Vagin, V.V., Naumova, N.M., Rozovskii, Ya.M., Klenov, M.S., and Gvozdev, V.A., RNA interference and development, Russ. J. Dev. Biol., 2002, vol. 33, no. 5, pp. 284–294.

    Article  Google Scholar 

  7. Balan, O.V. and Ozernyuk, N.D., Differentiation of stem cells isolated from rat skeletal muscles towards cardiomyocytes: The effect of an inhibitor of DNA methylation 5‑azacytidine, Biol. Bull., 2017, vol. 44, no. 4, pp. 355–362.

    Article  Google Scholar 

  8. Barskov, I.S., On the evolution of ectocochlia cephalopod ontogeny, in Sovremennye problemy izucheniya golovonogikh mollyuskov. Morfologiya, sistematika, evolyutsiya, ekologiya i biostratigrafiya (Modern Problems of Study of Cephalopods: Morphology, Systematics, Evolution, Ecology, and Biostratigraphy), Leonova, T.B., Barskov, I.S., and Mitta, V.V., Eds., Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2012, no. 3, pp. 29–34.

  9. Beddington, R.S., Induction of a second neural axis by the mouse node, Development, 1994, vol. 20, pp. 613–620.

    Google Scholar 

  10. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Fundamentals of Comparative Invertebrate Anatomy), Moscow: Nauka, 1964, vol. 1.

  11. Belousov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Izd. Mosk. Gos. Univ., 2005.

  12. Bengston, S. and Zhao Yue, Fossilized metazoan embryos from the earliest Cambrian, Science, 1997, vol. 277, no. 5332, pp. 1645–1648.

    Article  Google Scholar 

  13. Benton, M. and Harper, D.A.T., Introduction to Paleobiology and the Fossil Record, Oxford: Wiley-Blackwell, 2009.

    Google Scholar 

  14. Berdnikov, V.A., Selection on the rate of evolution as one of the factors that determine the structure of metazoans, Ekol. Genet., 2003, vol. 1, pp. 59–66.

    Google Scholar 

  15. Bogoslovskii, B.I., Devonskiye ammonoidei. I. Agoniatity (Devonian Ammonoids. I. Agoniatites), Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 124, Moscow: Nauka, 1969.

  16. Carroll, S.B., Grenier, J.K., and Weatherbee, S.D., From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, New York: Blackwell, 2005.

    Google Scholar 

  17. Chen Jun-Yuan, Oliveri, P., Li Chia-Wei. Zhou Gui-Qing, Gao Feng, Hagadorn, J.W., Peterson, K.J., and Davidson, E.H., Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo formation of China, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 9, pp. 4457–4462.

    Article  Google Scholar 

  18. Chen, J.M., Chuzhanova, N., Stenson, P.D., Férec, C., and Cooper, D.N., Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage, Hum. Mutat., 2005, vol. 25, no. 2, pp. 207–221.

    Article  Google Scholar 

  19. Chipman, A., Hexapoda: Comparative aspects of early development, in Evol. Devel. Biol. Inverteb, vol. 5. Ecdysozoa, Wanninger, A. Ed., Wien.: Springer, 2015, pp. 343–358.

  20. Davidson, E.H., Genomic Regulatory Systems, San Diego: Acad. Press, 2001.

    Google Scholar 

  21. Davidson, E.H., The Regulator Genome; Gene Regulatory Networks in Development and Evolution, San Diego: Acad. Press, 2006.

    Google Scholar 

  22. De Beer, G.R., Embryology and Evolution, Oxford: Clarendon Press, 1930.

    Google Scholar 

  23. De Beer, G.R., Embryos and Ancestors, Oxford: Clarendon Press, 1958.

    Google Scholar 

  24. De Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., and Balavoine, G, Hox-genes in brachiopods and priapulids and protostome evolution, Nature, 1999, vol. 399, pp. 772–776.

    Article  Google Scholar 

  25. Dondua, A.K., Biologiya razvitiya. T. 1, T. 2 (Developmental Biology. Vol. 1, Vol. 2), St Petersburg: S.-Peterb. Gos. Univ. (SpbGU), 2005.

  26. Erickson, J., An Introduction to Minerals: Seeking Clues to the Earth’s Past, New York: Facts on File, Inc., 2000.

    Google Scholar 

  27. Erwin, D.H., Early origin of the bilaterian developmental toolkit, Phil. Trans. R. Soc. B., 2009. vol. 364, pp. 2253–2261.

    Article  Google Scholar 

  28. Fedonkin, M.A., Two chronicles of life: experience of comparison (paleobiology and genomics on the early stages of biosphere evolution), in Problemy geologii i mineralogii (Problems of Geology and Mineralogy), Pystin, A.M., Ed., Syktyvkar: Geoprint, 2006, pp. 331–350.

  29. Fernald, R.D., Eyes: variety, development and evolution, Brain. Behav. Evol., 2004, vol. 64, no. 3, pp. 141–147.

    Article  Google Scholar 

  30. Ferrier, D.E.K., Evolution of Hox complexes, in Hox genes: Studies from the 20th to 21st Century, Deutsch, J.S., Ed., Paris: Springer Science & Business Media. 2010, pp. 91–100.

    Google Scholar 

  31. Ferrier, D.E.K., Minguillon, C., Holland, H.W., and Garcia-Fernàndez, J., The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14,Evol. Dev., 2000, vol. 2, no. 5, pp. 284–293.

    Article  Google Scholar 

  32. Gao, F. and Davidson, E.H., Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 6091–6096.

    Article  Google Scholar 

  33. García-Bellido, A., Genetic control of wing disc development in Drosophila, in Cell Patterning. Ciba Foundation Symposium 29, Amsterdam: Elsevier, 1975, vol. 29, pp. 161–182.

  34. Gilbert, S.F., Developmental Biology, Sunderland, MA: Sinauer Associates, 2006.

    Google Scholar 

  35. Giribet, G., New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics, Org. Divers. Evol., 2016, vol. 16, pp. 419–426.

    Article  Google Scholar 

  36. Goldschmidt, R.B., Evolution as viewed by geneticist, Am. Sci., 1952, vol. 40, no. 1, pp. 84–98.

    Google Scholar 

  37. Goodwin, B.C., Development and evolution, J. Theor. Biol., 1982, vol. 97, pp. 43–55.

    Article  Google Scholar 

  38. Gould, S.J., Ontogeny and Phylogeny, Cambridge: Cambridge Univ. Press, 1977.

    Google Scholar 

  39. Gould, S.J., The Structure of Evolutionary Theory, Cambridge, USA: Harvard Univ. Press, 2002.

    Book  Google Scholar 

  40. Hackett, J.A. and Surani, A., DNA methylation dynamic during mammalian life cycle, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2013, vol. 368, pp. 1609–1622.

    Article  Google Scholar 

  41. He, L. and Hannon, G.J., MicroRNAs: Small RNAs with a big role in gene regulation, Nat. Rev. Genetics, 2004, vol. 5, pp. 522–531.

    Article  Google Scholar 

  42. Hertel, J. and Stadler, P.F., The expansion of animal micro RNA families revisited, Life (Basel), 2015, vol. 5, pp. 905–920.

    Google Scholar 

  43. Hoegg, S., Brinkmann, H., Naylor, J.S., and Meyer, A., Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish, J. Mol. Evol., 2004, vol. 59, no. 2, pp. 190–203.

    Article  Google Scholar 

  44. Holland, P., Major transitions in animal evolution: a developmental genetic perspective, Am. Zool., 1998, vol. 38, pp. 829–842.

    Article  Google Scholar 

  45. Holland, P., Gene duplication: past, present and future, Semin. Cell. Dev. Biol., 1999, vol. 10, pp. 541–547.

    Article  Google Scholar 

  46. Holland, P., Did homeobox gene duplications contribute to the Cambrian explosion?, Zool. Lett., 2015, vol. 1, no. 1. https://doi.org/10.1186/s40851-014-0004-x

  47. Holland, P.W.H., and Garcia-Fernàndez, J., Hox genes, developmental evolution and vertebrate origins, Ontogenez, 1996, vol. 27, pp. 273–279.

    Google Scholar 

  48. Holland, P., Garcia-Fernandez, J., and Williams, N.A., Gene duplication and the origins of vertebrate development, Development, 1994, Suppl., pp. 125–133.

  49. Huxley, J., Problems of Relative Growth, London: Methuen, 1932.

    Google Scholar 

  50. Ikegami, K., Ohgane, J., Tanaka, S., Yagi, S., and Shiota, K., Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development, Int. J. Dev. Biol., 2009, vol. 53, nos. 2–3, pp. 203–214.

    Article  Google Scholar 

  51. Ivanova-Kazas, O.M., Evolyutsionnaya embriologiya zhivotnykh (Evolutionary Embryology of Animals), St. Petersburg: Nauka, 1995.

  52. Isaeva, V.V., Ozernyuk, N.D., and Rozhnov, S.V., Evidence for evolutionary changes in ontogeny: Paleontological, comparative morphological, and molecular aspects, Biol. Bull., 2013, vol. 40, no. 3, pp. 243–252.

    Article  Google Scholar 

  53. Jacob, F., Evolution and tinkering, Science, 1977, vol. 196, pp. 1161–1166.

    Article  Google Scholar 

  54. Josefowicz, C., McClintock, J., and Prince, V., The fates of zebrafish Hox gene duplicates, J. Struct. Func. Genomics, 2003, vol. 3, nos. 1–4, pp. 185–194.

    Article  Google Scholar 

  55. King, M.C. and Wilson, A.C., Evolution at two levels in humans and chimpanzees, Science, 1975, vol. 188, pp. 107–116.

    Article  Google Scholar 

  56. Kirschner, M.W. and Gerhart, J.C., The Plausibility of Life, New Haven, London: Yale Univ. Press. 2005.

    Google Scholar 

  57. Klenov, M.S. and Gvozdev, V.A., Heterochromatin formation: role of short RNAs and DNA methylation, Biochemistry (Moscow), 2005, vol. 70, pp. 1187–1198.

    Article  Google Scholar 

  58. Klenov, M.S., Stolyarenko, A.D., Ryazansky, S.S., Sokolova, O.A., Konstantinov, I.N., and Gvozdev, V.A., Role of short RNAs in regulating the expression of genes and mobile elements in germ cells, Russ. J. Dev. Biol., 2007, vol. 38, no. 3, pp. 171–183.

    Article  Google Scholar 

  59. Kolchanov, N.A. and Suslov, V.V., Encoding and evolution of complexity of the biological organization, in Evolyutsiya biosfery i bioraznoobraziya. K 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity: 70th Anniversary of the Birthday of A.Yu. Rozanov), Rozhnov, V.S., Ed., Moscow: KMK, 2006, pp. 60–96.

  60. Kolchanov, N.A., Suslov, V.V., and Gunbin, K.V., Modeling of biological evolution: regulatory genetic systems and coding of the complexity of biological organization, Vestn.VOGiS, 2004, vol. 8, no. 2, pp. 86–99.

    Google Scholar 

  61. Kondrashov, F.A. and Kondrashov, A.S., Role of selection in fixation of gene duplication, J. Theor. Biol., 2006, vol. 239, pp. 141–151.

    Article  Google Scholar 

  62. Korchagina, N.M., Bakalenko, N.I., and Kulakova, M.A., Hox-cluster and evolution of morphogenesis, Russ. J. Dev. Biol., 2010, vol. 41, no. 5, pp. 302–311.

    Article  Google Scholar 

  63. Korochkin, L.I., Biologiya individual’nogo razvitiya (Biology of Individual Development), Moscow: Mosk. Gos. Univ., 2002.

  64. Koryakov, D.E., Histone modification and regulation of chromatin function, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 970–984.

    Article  Google Scholar 

  65. Kraus, Yu.A. and Rodimov, A.A., Heterochronies and heterotopies of morphogenetic processes at the cell level as a source of diversity and variability in cnidarian gastrulation, in Kletochnye, molekulyarnye i evolyutsionnye aspekty morfogeneza (Cellular, Molecular, and Evolutionary Aspects of Morphogenesis), Moscow: Tovar. Nauchn. Izd. KMK, 2007, pp. 97–99.

  66. Kulakova, M.A., Bakalenko, N.I., and Novikova, E.L., Heterotopies and heterochronies in the developmental programs under the control of the homeobox-containing gene cluster, in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 17–32.

  67. Lawrence, P., The Making of a Fly: The Genetics of Animal Design, Oxford: Blackwell, 1992.

    Google Scholar 

  68. Leonova, T.B., Heterochronies in the evolution of Paleozoic ammonids, in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 164–177.

  69. Levit, D.S., The root of evo-devo in Russia: is there a characteristic “Russian tradition”?, Theor. Biosci., 2007, vol. 126, pp. 131–140.

    Article  Google Scholar 

  70. Love, A.C., Morphological and paleontological perspectives for a history of Evo-Devo, in From Embryology to Evo-Devo, Laubichler, M.D. and Maienschein, J., Eds., Cambridge; London: MIT Press, pp. 267–307.

  71. Margueron, R., Trojer, P., and Reinberg, D., The key to development: interpreting the histone code?, Curr. Opin. Genet. Dev., 2005, vol. 15, pp. 163–176.

    Article  Google Scholar 

  72. Martynov, A.V., Ontogeneticheskaya sistematika i novaya model’ evolyutsii Bilateria (Ontogenetic Systematics and a New Model of Evolution of Bilateria), Moscow: Tovar. Nauchn. Izd. KMK, 2011.

  73. Mayr, E., Animal Species and Evolution, Cambridge, MA: Harvard Univ. Press, 1963.

    Book  Google Scholar 

  74. McKinney, M.L. and McNamara, K.J., Heterochrony: The Evolution of Ontogeny, New York: Plenum Press, 1991.

    Book  Google Scholar 

  75. McNamara, K.J., A guide to the nomenclature of heterochrony, J. Paleontol., 1986, vol. 60, pp. 4–13.

    Article  Google Scholar 

  76. McNamara, K.J., Shapes of Time: The Evolution of Growth and Development, Baltimore: John Hopkins Univ. Press., 1997.

    Google Scholar 

  77. McNamara, K.J., Changing times, changing places: heterochrony and heterotopy, Paleobiology, 2002, vol. 28, pp. 551–558.

    Article  Google Scholar 

  78. Minelli, A., EvoDevo and its significance for animal evolution and phylogeny, in Evol. Devel. Biol. Inverteb., Wanninger, A. Ed., Wien.: Springer, 2015a, pp. 267–272.

    Google Scholar 

  79. Minelli, A., Morphological misfits and the architecture of development, in Macroevolution: Explanation, Interpretation, and Evidence, Serrelli, E. and Gontier, N., Eds., Heidelberg: Springer, 2015b, pp. 329–343.

    Google Scholar 

  80. Monod, J., Chance and Necessity, New York: Alfred F. Knopf, 1971.

    Google Scholar 

  81. Montgomery, M.K. and Fire, A., Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression, Trends Genet., 1998, vol. 14, no. 7, pp. 255–258.

    Article  Google Scholar 

  82. Müller, G.B. Evo-devo as a discipline, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge; N.-Y.: Cambridge Univ. Press, 2008, pp. 5–50.

    Google Scholar 

  83. Nüsslein-Volhard, C., Determination of the embryonic axes of Drosophila, Development, 1991, Suppl. 1, pp. 1–10.

  84. Ohno, S., Evolution by Gene Duplication, Berlin–Heidelberg: Springer, 1970.

    Book  Google Scholar 

  85. Oliveri, P., Qiang, T., and Davidson, E.H., Global regulatory logic for specification of an embryonic cell lineage, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 5955–5962.

    Article  Google Scholar 

  86. Ozernyuk, N.D., Evolutionary mechanisms: Modularity, morphogenetic fields of gene expression, genetic regulation, Paleontol. J., 2015, vol. 49, no. 14, pp. 1524–1529.

    Article  Google Scholar 

  87. Ozernyuk, N.D. and Isaeva, V.V., Evolyutsiya ontogeneza (Evolution of Ontogeny), Moscow: Tovar. Nauchn. Izd. KMK, 2016.

  88. Ozernyuk, N.D. and Myuge, N.S., Evolutional principles of homology in regulatory genes of myogenesis, Biol. Bull., 2012, vol. 39, no. 4, pp. 316–322.

    Article  Google Scholar 

  89. Ozernyuk, N.D. and Myuge, N.S., Large-scale genome duplications and paralog divergence in fish, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 63–69.

    Article  Google Scholar 

  90. Peter, I.S. and Davidson, E.H., Evolution of gene regulatory networks controlling body plan development, Cell, 2011, vol. 144, pp. 970–985.

    Article  Google Scholar 

  91. Peterson, K.J. and Davidson, E.H., Regulatory evolution and the origin of the bilaterians, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4430–4433.

    Article  Google Scholar 

  92. Por, F.D., The persistent progression: a new view an animal evolution, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia: Pensoft Publ., 2003, pp. 27–39.

    Google Scholar 

  93. Raff, R.A. and Raff, E.C., Evolution in the light of embryos: seeking the origins of novelties in ontogeny, in: Form and Function in Developmental Evolution, Laubichler, M.D. and Maienschein, J., Eds., Cambridge: Cambridge Univ. Press. 2009, pp. 83–111.

    Google Scholar 

  94. Raff, R.A. and Kaufman, T.C., Embryos, Genes, and Evolution: The Developmental-Genetic Basis of Evolutionary Change, New York–London: Macmillan Publ. Co., 1983.

    Google Scholar 

  95. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,Nature, 2000, vol. 403, no. 6772, pp. 901–906.

    Article  Google Scholar 

  96. Rozanov, A.Yu., Zakonomernosti morfologicheskoi evolyutsii arkheotsiat i voprosy yarusnogo raschleneniya nizhnego kembriya (Trends in Morphological Evolution of Archaeocyathids and Problems of the Lower Cambrian Subdivision into Stages), Moscow: Nauka, 1973.

  97. Rozanov, A.Yu., Living conditions at the early Earth after 4.0 billion years ago, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009, pp. 185–201.

  98. Rozhnov, S.V., Crookedness of the stem and crown of pelmatozoan echinoderms as resulting from different kinds of heterochrony, in Proc. European Conf. on Echinoderms, Milan: Balkema, 1998, pp. 385–390.

  99. Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in Early Paleozoic, Paleontol. J., 2002, vol. 36, suppl. 6, pp. S525–S674.

    Google Scholar 

  100. Rozhnov, S.V., Anteroposterior axis of echinoderms and mouth displacement in their historical and individual development, Izv. Ross. Akad. Nauk Ser. Biol., 2012, no. 2, pp. 203–212.

  101. Rozhnov, S.V., The role of modularity and heterochronies in the establishment of higher metazoan taxa as inferred from paleontological data, in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 61–82.

  102. Ruzhencev, V.E., The main types of evolutionary changes in the suture line of late Paleozoic ammonites, in Pamyati Akademika A.A. Borisyaka (In Memory of Academician A.A. Borissiak), Sarycheva, T.G., Ed., Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 20, Moscow-Leningrad: Akad. Nauk SSSR, 1949, pp. 183–198.

  103. Ruzhencev, V.E., Printsipy sistematiki, sistema i filogeniya paleozoyskikh ammonoidey (Principles of Systematics, the System, and Phylogeny of the Paleozoic Ammonoids), Orlov, Yu.A., Ed., Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 83, Moscow: Akad. Nauk SSSR, 1960, pp. 85–106.

  104. Schmalhausen, I.I., Faktory evolyutsii (teoriya stabiliziruyushchego otbora) (Factors of Evolution: The Theory of Stabilizing Selection), Moscow: Akad. Nauk SSSR, 1946.

  105. Schmalhausen, I.I., Problemy darvinizma (Problems of Darwinism), Leningrad: Nauka, 1969. Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Moscow–Leningrad, 1939.

  106. Shishkin, M.A., Individual development and lessons of evolutionism, Ontogenez, 2006, vol. 37, no. 3, pp. 179–198.

    Google Scholar 

  107. Shkil’, F.N. and Smirnov, S.V., Heterochronies in the evolution of lower vertebrates: hypotheses and experiments, in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 226–246.

  108. Shubin, N. and Alberch, P.A., A morphogenetic approach to the origin and basic organization of tetrapod limb, Evol. Biol., 1986, vol. 20, pp. 319–387.

    Google Scholar 

  109. Sidow, A., Gen(om)e duplication in the evolution of early vertebrates, Curr. Opin. Genet. Dev., 1996, vol. 6, pp. 715–722.

    Article  Google Scholar 

  110. Slack, F.J. and Ruvkun, G., Heterochronic genes in development and evolution, Biol. Bull., 1998, vol. 195, pp. 375–376.

    Article  Google Scholar 

  111. Smirnov, A.V., Pedomorphic traits in the structure of holothurians and the role of pedomorphosis in the emergence and evolution of Holothuroidea in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 178–209.

    Google Scholar 

  112. Smirnov, S.V., Pedomorphosis as a mechanism of evolutionary transformations of organisms, in Sovremennaya evolyutsionnaya morfologiya (Modern Evolutionary Morphology), Kiev: Naukova dumka, 1991, pp. 88–103.

  113. Smirnov, S.V., Metamorphosis in tailed amphibians and evolution of its regulatory mechanisms, in Evolyutsionnye factory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors in the Formation of Animal World Diversity), Moscow: Tovar. Nauchn. Izd. KMK, 2005, pp. 124–134.

  114. Smith, K.K., Time’s arrow: heterochrony and the evolution of development, Int. J. Dev. Biol., 2003, vol. 47, pp. 613–621.

    Google Scholar 

  115. Soifer, V.N., The Human Genome international project, Soros. Obrazovat. Zh., 1998, no. 12, pp. 4–11.

  116. Srivastava, M.A., Comparative genomics perspective on the origin of multicellularity and early animal evolution, in Evolutionary Transitions to Multicellular Life. Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M., Eds., Dordrecht: Springer Science; Business Media, 2015, pp. 269–300.

    Google Scholar 

  117. Sverdlov, E.D., Vzglyad na zhizn’ cherez okno genoma. Ocherki strukturnoi molekulyarnoi genetiki (Looking at Life through the Genome Window. Essays on Structural Molecular Genetics), Moscow: Nauka, 2009, vol. 1.

  118. Vanyshin, B.F., Tkacheva, S.G., and Belozersky, A.N., Rare bases in animal DNA, Nature, 1970, vol. 225, pp. 948–949.

    Article  Google Scholar 

  119. Vanyushin, B.F., DNA methylation and epigenetics, Genetika, 2006, vol. 42, no. 9, pp. 1186–1199.

    Google Scholar 

  120. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R. et al., The sequence of the human genome, Science, 2001, vol. 291, no. 5507, pp. 1304–1351.

    Article  Google Scholar 

  121. Vorob’eva, E.I., Morfologiya i osobennosti evolyutsii kisteperykh ryb (Morphology and Characteristics of Evolution of Coelacanths), Moscow: Nauka, 1977.

  122. Vorob’eva, E.I., Modern evolutional developmental biology: Mechanical and molecular genetic or phenotypic approaches?, Russ. J. Dev. Biol., 2010a, vol. 41, no. 5, pp. 283–290.

    Article  Google Scholar 

  123. Vorob’eva, E.I., Evo-devo and I.I. Schmalhausen’s concept of ontogeny, Biol. Bull., 2010b, vol. 37, no. 2, pp. 106–113.

    Article  Google Scholar 

  124. Vrba, E.S., Ecology, development, and evolution: perspectives from the fossil record, in Environment, Development, and Evolution, Hall, B.K., Pearson, B.J., and Müller, G.B., Eds., Cambridge: MIT Press, 2003, pp. 85–105.

    Google Scholar 

  125. Waddington, C.H., New Patterns in Genetics and Development, Princeton: University Presses of California, Columbia and Princeton, 1962.

    Book  Google Scholar 

  126. Wang Yan-ming. and Gu Xun, Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction, Genomics, 2001, vol. 158, no. 3, pp. 1311–1320.

    Google Scholar 

  127. Wray, G.A., Levinton, J.S., and Shapiro, L.H., Precambrian divergences among metazoan phyla, Science, 1996, vol. 274, pp. 568–573.

    Article  Google Scholar 

  128. Zakhartsev, M., Lucassen, M., Smirnova, Y., Deigweiher, K., Smirnova, Y.A., Zinov’eva, R.D., Mugue, N., Baklushinskaya, I., Pörtner, H.O., and Ozernyuk, N.D., Differential expression of duplicated LDH-A genes during temperature acclimation of weatherfish Misgurnus fossilis. Functional consequences for the enzyme, FEBS J., 2007, vol. 274, no. 6, pp. 1503–1513.

    Article  Google Scholar 

  129. Zhang Jian-zhi, Evolution by gene duplication: an update, Trends in Ecol. Evol., 2003, vol. 28, no. 6, pp. 292–298.

    Article  Google Scholar 

  130. Zhang Peng, Gu Zheng-long, and Li Wen-Hsiung, Different evolutionary patterns between young duplicate genes in the human genome, Genome Biol., 2003, vol. 4, no. 9, p. R56.

    Article  Google Scholar 

  131. Zhimulev, I.F., Obshchaya i molekulyarnaya genetika (General and Molecular Genetics), Novosibirsk: Izd. Novosibirsk. Univ., 2002.

Download references

Funding

The work was supported by the Russian science foundation (project no. 19-14-00346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Ozernyuk.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozernyuk, N.D. Evolutionary Developmental Biology: the Interaction of Developmental Biology, Evolutionary Biology, Paleontology, and Genomics. Paleontol. J. 53, 1117–1133 (2019). https://doi.org/10.1134/S0031030119110078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030119110078

Keywords:

Navigation