Skip to main content
Log in

On New Approaches in the Study of Evolution of Macrotaxa and the Concept of Econ

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The modern attention to global and system approaches to the study of life evolution increase the interest in integrating macroevolutionary and ecological research and developing their theoretical foundations. The econ of species is suggested as an elementary fundamental unit of evolving paleobiospheric spatiotemporal continuum. The concept of econ, the unity of species and its ecological niche, allows solving issues of evolution of biodiversity, evolutionary macroecology and biogeography on spatiotemporal scales and in the framework of the system macrotaxon–biosphere. These studies need to be based on actual taxa. Therefore, a natural classification of organisms, reflecting true phylogeny, is of particular relevance. A holistic approach will allow obtaining more substantiated conclusions on the evolution and distribution of both fossil and modern organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Blackburn, T.M. and Gaston, K.J., Macroecology: Concepts and Consequences, Oxford: Blackwell, 2003.

    Google Scholar 

  2. Brown, J.H., Macroecology, Chicago: Univ. Chicago Press, 1995.

    Google Scholar 

  3. Brown, J.H. and Maurer, B.A., Macroecology: The division of food and space among species on continents, Science, 1989, vol. 243, pp. 1145–1150.

    Article  Google Scholar 

  4. Carotenuto, F., Barbera, C., and Raia, P., Occupancy, range size, and phylogeny in Eurasian Pliocene to Recent large mammals, Paleobiology, 2010, vol. 36, pp. 399–414.

    Article  Google Scholar 

  5. Carotenuto, F., Diniz-Filho, J.A.F., and Raia, P., Space and time: The two dimensions of Artiodactyla body mass evolution, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 437, pp. 18–25.

    Article  Google Scholar 

  6. Castiglione, S., Mondanaro, A., Carotenuto, F., et al., The many shapes of diversity: ecological and evolutionary determinants of biodiversity through time, Evol. Ecol. Res., 2017, vol. 18, pp. 25–39.

    Google Scholar 

  7. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., and Kembel, S.W., The merging of community ecology and phylogenetic biology, Ecol. Lett., 2009, vol. 12, pp. 693–715.

    Article  Google Scholar 

  8. Chase, J.M. and Leibold, M.A., Ecological Niches: Linking Classical and Contemporary Approaches, Chicago: Univ. Chicago Press, 2003.

    Book  Google Scholar 

  9. Darlington, P.J., Zoogeography: The Geographic Distribution of Animals, Cambridge: Harvard Univ. Press, 1957.

    Google Scholar 

  10. Darwin, Ch., The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, London: J. Murray, 1859.

    Google Scholar 

  11. Dzunino, M. and Dzullini, A., Biogeografiya (evolyutsionnye aspekty) (Biogeography: Evolutionary Aspects), Moscow: Mosk. Gos. Univ., 2010.

  12. Fortelius, M., Eronen, J., Liu, L., et al., Late Miocene and Early Pliocene large land mammals and climatic changes in Eurasia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 238, pp. 219–227.

    Article  Google Scholar 

  13. Grinnell, J., The niche relationships of the California thrasher, Auk, 1917, vol. 34, pp. 427–433.

    Article  Google Scholar 

  14. Heatwole, H., The concept of the econe, a fundamental ecological unit, Trop. Ecol., 1989, vol. 25, no. 1, pp. 13–19.

    Google Scholar 

  15. Hennig, W., Phylogenetic Systematics, Urbana: Illinois Univ. Press, 1966.

    Google Scholar 

  16. Hubert, N., Calcagno, V., Ettiene, S., and Mouquet, N., Metacommunity speciation models and their implications for diversification theory, Ecol. Lett., 2015, vol. 18, pp. 864–881.

    Article  Google Scholar 

  17. Hunt, G., The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 18404–18408.

    Article  Google Scholar 

  18. Hunt, G., Hopkins, M.J., and Lidgard, S., Simple versus complex models of trait evolution and stasis as a response to environmental change, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 4885–4890.

    Article  Google Scholar 

  19. Hutchinson, G.E., Concluding remarks, Cold Spring Harbor Sym. Quant. Biol., 1957, vol. 22, pp. 415–427.

    Article  Google Scholar 

  20. Jablonski, D., Lessons from the past: Evolutionary impacts of mass extinctions, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 5393–5398.

    Article  Google Scholar 

  21. Jablonski, D., Evolutionary innovations in the fossil record: The intersection of ecology, development, and macroevolution, J. Exp. Zool., 2005, vol. 304B, pp. 504–519.

    Article  Google Scholar 

  22. Jablonski, D., Benton, M.J., Gastaldo, R.A., et al., Macroevolution in the 21st century, Kleine Senckenbergreihe, 1997, vol. 25 (Paleontology in the 21st Century Workshop, Lane, H.R., Lipps, J., Steininger, F.F., and Ziegler, W., Eds.,), pp. 111–119.

  23. Kembel, S.W., Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests, Ecol. Lett., 2009, vol. 12, pp. 949–960.

    Article  Google Scholar 

  24. Kowalevsky, V.O., Osteology of two fossil species from the ungulate group, Entelodon and Gelocus, Izv. Imp. Ob-va Lyubit. Estestvoznan. Antropol. Etnogr., 1875, vol. 16, pp. 1–59.

    Google Scholar 

  25. Laland, K., Matthews, B., and Feldman, M.W., An introduction to niche construction theory, Evol. Ecol., 2016, vol. 30, pp. 191–202.

    Article  Google Scholar 

  26. Lewontin, R.C., The organism as the subject and object of evolution, Scientia, 1983, vol. 118, pp. 63–82.

    Google Scholar 

  27. Lidicker, W.Z., Levels of organization in biology, Biol. Rev., 2008, vol. 83, pp. 71–78.

    Article  Google Scholar 

  28. Lieberman, B.S., Miller, W.III., and Eldredge, N., Paleontological patterns, macroecological dynamics and the evolutionary process, Evol. Biol., 2007, vol. 34, pp. 28–48.

    Article  Google Scholar 

  29. Lima-Ribeiro, M.S. and Diniz-Filho, J.A.F., Climate change, human overkill, and the extinction of megafauna: A macroecological approach based on pattern-oriented modeling, Evol. Ecol. Res., 2017, vol. 18, pp. 97–121.

    Google Scholar 

  30. Losos, J.B., Adaptive radiation, ecological opportunity, and evolutionary determinism, Am. Natur., 2010, vol. 175, pp. 623–639.

    Article  Google Scholar 

  31. MacArthur, R., The theory of the niche, in Population Biology and Evolution, Lewontin, R.C., Ed., Syracuse: Syracuse Univ. Press, 1968, pp. 159–176.

    Google Scholar 

  32. MacArthur, R., Geographical Ecology: Patterns in the Distribution of Species, New York: Harper and Row, 1972.

    Google Scholar 

  33. Mayr, E., Cladistic analysis or cladistics classification, Z. Zool. Syst. Evol. Forsch., 1974, vol. 12, no. 2, pp. 94–128.

    Article  Google Scholar 

  34. Mayr, E., The Growth of Biological Thought: Diversity, Evolution, and Inheritance, Cambridge: Belknap Press, 1982.

    Google Scholar 

  35. Mayr, E., Towards a New Philosophy of Biology: Observation of an Evolutionist, Cambridge: Belknap Press, 1988.

    Google Scholar 

  36. McGowen, M.R., Gatesy, J., and Wildman, D.E., Molecular evolution tracks macroevolutionary transition in Cetacea, Trends Ecol. Evol., 2014, vol. 29, pp. 336–346.

    Article  Google Scholar 

  37. Meszéna, G. and Hendry, A.P., Introduction to niche theory and speciation, Evol. Ecol. Res., 2012, vol. 14, pp. 361–363.

    Google Scholar 

  38. Palombo, M.R., Valli, A., Kostopoulos, D.S., et al., Similarity relationships between the Pliocene to Middle Pleistocene large mammal faunas of Southern Europe from Spain to the Balkans and the North Pontic Region, Cour. Forsch. Senckenb., 2006, vol. 256, pp. 329–347.

    Google Scholar 

  39. Pavlinov, I.Ya., Kladisticheskii analiz (metodologicheskie problemy) (Cladistic Analysis: Methodological Problems), Moscow: Mosk. Gos. Univ., 1990.

  40. Pavlinov, I.Ya., Vvedenie v sovremennuyu filogenetiku (kladogeneticheskii aspekt) (Introduction to Modern Phylogenetics: Cladogenetic Aspect), Moscow: KMK, 2005.

  41. Pearse, W.D., Purvis, A., Cavender-Bares, J., and Helmus, M.R., Metrics and models of community phylogenetics, in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology, Garamszegi, L.Z., Ed., Berlin: Springer, 2014, pp. 451–464.

    Google Scholar 

  42. Pocheville, A., The ecological niche: History and recent controversy, in Handbook of Evolutionary Thinking in the Sciences, Heams, T., Huneman, P., Lecointre, G., and Silberstein, M., Eds., Dordrecht: Springer, 2015, pp. 547–586.

    Google Scholar 

  43. Polly, P.D., Fuentes-Gonzalez, J., Lawing, A.M., et al., Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora, Evol. Ecol. Res., 2017, vol. 18, pp. 61–95.

    Google Scholar 

  44. Rabosky, D.L., Ecological limits on clade diversification in higher taxa, Am. Natur., 2009, vol. 173, pp. 662–674.

    Article  Google Scholar 

  45. Raia, P. and Fortelius, M., Evolutionary macroecology, Evol. Ecol. Res., 2017, vol. 18, pp. 1–6.

    Google Scholar 

  46. Rasnitsyn, A.P., Chronicle and cladogram, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 39–48.

  47. Ricklefs, R.E., History and diversity: Explorations at the intersection of ecology and evolution, Am. Natur., 2007, vol. 170, pp. S56–S70.

    Article  Google Scholar 

  48. Sahney, S., Benton, M.J., and Ferry, P.A., Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on lands, Biol. Lett., 2010, vol. 6, no. 4, pp. 544–547.

    Article  Google Scholar 

  49. Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa (Pathways and Patterns of the Evolutionary Process), Moscow–Leningrad: Akad. Nauk SSSR, 1940.

  50. Schmalhausen, I.I., Stabilizing selection and its place among factors of evolution, Zhurn. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.

    Google Scholar 

  51. Sepkoski, J.J., Biodiversity: Past, present, and future, J. Paleontol., 1997, vol. 71, pp. 533–539.

    Article  Google Scholar 

  52. Sepkoski, J.J., Bambach, R.K., Raup, D.M., and Valentine, J.W., Phanerozoic marine diversity and the fossil record, Nature, 1981, vol. 293, pp. 435–437.

    Article  Google Scholar 

  53. Severtsov, A.N., Glavnye napravleniya evolyutsionnogo protsessa (Mainstream of the Evolutionary Process), Moscow: Dumnova, 1925.

  54. Silvestro, D., Pires, M.M., Quental, T.B., and Salamin, N., Bayesian estimation of multipleclade competition from fossil data, Evol. Ecol. Res., 2017, vol. 18, pp. 41–59.

    Google Scholar 

  55. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  56. Simpson, G.G., The Principle of Animal Taxonomy, New York: Columbia Univ. Press, 1961.

    Book  Google Scholar 

  57. Simpson, G.G., Why and How: Some Problems and Methods in Historical Biology, New York: Pergamon Press, 1980.

    Google Scholar 

  58. Teilhard de Chardin, P., Le phénoméne humain, Paris: Du Seuil, 1955.

    Google Scholar 

  59. Valentine, J.W. and Jablonski, D., Morphological and developmental macroevolution: A paleontological perspective, Int. J. Develop. Biol., 2003, vol. 47, nos. 7–8, pp. 517–522.

  60. Van Valen, L., Adaptive zones and the orders of mammals, Evolution, 1971, vol. 25, no. 2, pp. 120–128.

    Article  Google Scholar 

  61. Van Valen, L., Why not to be a cladist, Evol. Theory, 1978, vol. 3, pp. 285–294.

    Google Scholar 

  62. Vavilov, N.I., Law of homologous series in hereditary variation, in Trudy Vserossiiskogo s’’ezda po selektsii i semenovodstvu (Proceedings of the Congress on Selection and Seedage), Saratov, Gubpoligrafotdel, 1920, pp. 41-‒56.

  63. Vavilov, N.I., Law of homologous series in hereditary variation, in Teoreticheskoe osnovy selektsii rastenii (Theoretical Foundation of Plant Selection), Moscow–Leningrad, 1935, vol. 1, pp. 75–128.

  64. Vislobokova, I.A., Fossil deer of Eurasia, Tr. Paleontol Inst. Akad. Nauk SSSR, 1990, vol. 240, pp. 1–208.

    Google Scholar 

  65. Vislobokova, I.A., Historical development of Artiodactyla in Northern Eurasia and evolutionary stages of their communities in the Cenozoic, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 416–438.

  66. Vislobokova, I.A., The main stages in the evolution of artiodactyl communities of northern Eurasia in the Pliocene–beginning of the Middle Pleistocene: Part 1, Paleontol. Zh., 2008a, no. 3, pp. 76–91.

  67. Vislobokova, I.A., The main stages in the evolution of artiodactyl communities of northern Eurasia in the Pliocene–beginning of the Middle Pleistocene: Part 2, Paleontol. Zh., 2008b, no. 4, pp. 79–89.

  68. Vislobokova, I.A., Giant deer: Origin, evolution, role in the biosphere, Paleontol. J., 2012, vol. 46, no. 7, pp. 643–775.

    Article  Google Scholar 

  69. Vislobokova, I.A., On the origin of Cetartiodactyla: Comparison of the data of evolutionary morphology and molecular biology, Paleontol. Zh., 2013a, no. 3, pp. 83–97.

  70. Vislobokova, I.A., Ecological evolution of early Cetartiodactyla and reconstruction of its missing initial link, Paleontol. Zh., 2013b, no. 5, pp. 72–88.

  71. Vislobokova, I.A., Evolyutsiya biosfery i makroevolyutsiya (Evolution of the Biosphere and Macroevolution), Moscow: GEOS, 2014.

  72. Vislobokova, I.A., Macroevolution as a system process of the development of life, in Paleontologiya. Stratigrafiya. Astrobiologiya. K 80-letiyu akad. A.Yu. Rozanova (Paleontology, Stratigraphy, and Astrobiology: To the 80th Anniversary of the Birthday of Academician A.Yu. Rozanov), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2016, pp. 137–165.

  73. Vislobokova, I.A., The concept of macroevolution in the light of modern data, Paleontol. J., 2017, vol. 51, no. 8, pp. 799–898.

    Article  Google Scholar 

  74. Vrba, E.S., Mammals as a key to evolutionary theory, J. Mammal., 1992, vol. 73, pp. 1–28.

    Article  Google Scholar 

  75. Vrba, E.S., Turnover pulses, the Red Queen, and related topics, Am. J. Sci., 1993, vol. 293, pp. 418–452.

    Article  Google Scholar 

  76. Zelenkov, N.V., Cladistic analysis, evolution and paleontology, in Sovremennaya paleontologiya: klassicheskie i noveishie metody–2012 (Modern Paleontology: Classical and Modern Methods: 2012), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2012, pp. 9–25.

Download references

ACKNOWLEDGMENTS

This study was supported by the program of the Russian Academy of Sciences on Biosphere Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Vislobokova.

Additional information

Translated by G. Rautian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vislobokova, I.A. On New Approaches in the Study of Evolution of Macrotaxa and the Concept of Econ. Paleontol. J. 53, 1–9 (2019). https://doi.org/10.1134/S0031030119010118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030119010118

Keywords:

Navigation