Skip to main content
Log in

The concept of macroevolution in view of modern data

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Macroevolution, or evolution of superspecies taxa is the process of transformation of “organismal” life flows on the Earth during its geological history. In the present study, this process is analyzed with using the system and evolutionarily‒ecological approaches. Based on modern paleontological, evolutionary biological, molecular, and genetic data, mostly on vertebrates and hominins, the major factors and patterns of macroevolution and also the role of macroevolution in the biosphere evolution are discussed. The fundamental bases of the concept of macroevolution, the problems of methodology and methods of the study of organismal evolution are considered. It is shown that the processes at the macroevolutionary level agree with the epigenetic theory of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agadjanian, A.K., Questions of early radiation of mammals, Paleontol. Zh., 2003, no. 1, pp. 78–91.

    Google Scholar 

  • Akhmetiev, M.A. and Lebedev, E.L., Changes in climate and vegetation of the Northern Hemisphere in the Late Phanerozoic, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganization and Evolution of the Biosphere), Moscow: Nedra, 1994, pp. 278–284.

    Google Scholar 

  • Alekseev, A.S., Global biotic crises and mass extinctions in the Phanerozoic history of the Earth, in Bioticheskie sobytiya na osnovnykh rubezhakh fanerozoya (Biotic Events at the Main Boundaries of the Phanerozoic), Moscow: Mosk. Gos. Univ., 1989, pp. 22–47.

    Google Scholar 

  • Alekseev, A.S., Dmitriev, V.Yu., and Ponomarenko, A.G., Evolution of taxonomic diversity, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganizations and Evolution of the Biosphere), Moscow: GEOS, 2001, pp. 1–126.

    Google Scholar 

  • Alföldi, J., DiPalma, F., Grabherr, M., et al., The green anole lizard genome: The first reptilian genome and comparative analysis with birds and mammals, Nature, 2011, vol. 477, no. 7366, pp. 587–591.

    Article  Google Scholar 

  • Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Nauka, 1983.

    Google Scholar 

  • Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: IKTs Akademkniga, 2003.

    Google Scholar 

  • Amemiya, C.T., Alföldi, J., Lee, A.P., et al., The African coelacanth genome provides insights into tetrapod evolution, Nature, 2013, vol. 496, no. 7445, pp. 311–316.

    Article  Google Scholar 

  • Anokhin, P.K., Systemogenesis as a general pattern of evolutionary process, Byull. Eksp. Biol. Med., 1948, vol. 26, no. 8, pp. 81–99.

    Google Scholar 

  • Anokhin, P.K., Uzlovye voprosy teorii funktsional’nykh system (Central Questions of the Theory of Functional Systems), Moscow: Nauka, 1980.

    Google Scholar 

  • Arnold, S.J., Pfrender, M.E., and Jones, A.G., The adaptive landscape as a conceptual bridge between micro- and macroevolution, Genetics, 2001, vols. 112‒113, pp. 9–32.

    Google Scholar 

  • Ashby, W.R., An Introduction to Cybernetics, London: Chapman and Hall, 1956.

    Book  Google Scholar 

  • Ashby, W.R., Principles of the self-organizing system, in Principles of Self-Organization: Transactions of the University of Illinois Symposium, von Foerster, H. and Zopf, G.W., Jr., Eds., London: Pergamon Press, 1962, pp. 255–278.

    Google Scholar 

  • Astafieva, M.M., Gerasimenko, L.M., Geptner, A.R., et al., Iskopaemye bakterii i drugie mikroorgaizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2011.

    Google Scholar 

  • Baab, K.L., The place of Homo florensianus in human evolution, J. Anthropol. Sci., 2016, vol. 94, pp. 5–18.

    Google Scholar 

  • Baer, K.E., von, Über Entwickelungsgeschichte der Thiere. Th. 1, Königsberg: Gebrüdern Bornträger, 1828.

    Book  Google Scholar 

  • Baer, K.M., von, Istoriya razvitiya zhivotnykh (History of the Development of Animals), Leningrad: Akad. Nauk SSSR, 1950, vols. 1, 2.

    Google Scholar 

  • Barbosa-Morais, N.I., Irimia, M., Ran, Q., et al., The evolutionary landscape of alternative splicing in vertebrate species, Science, 2012, vol. 338, pp. 1587–1593.

    Article  Google Scholar 

  • Barnosky, A.D., Matzke, N., Tomiya, S., et al., Has the Earth’s sixth mass extinction already arrived?, Nature, 2011, vol. 471, pp. 51–57.

    Article  Google Scholar 

  • de Beer, G.R., Embriology and Evolution, Oxford: Oxford Univ. Press, 1930.

    Google Scholar 

  • de Beer, G.R., Embryos and Ancestors, 3rd ed., Oxford: Oxford Univ. Press, 1958.

    Google Scholar 

  • Beherensmeyer, J.K. Damuth, J.D., diMichele, W.A., Eds., Terrestrial Ecosystems through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals, Chicago: Univ. Chicago Press, 1992.

    Google Scholar 

  • Beklemishev, V.N., Biotsenologicheskie osnovy sravnitel’noi parazitologii (Biocoenological Foundations of Comparative Parasitology), Moscow: Nauka, 1970.

    Google Scholar 

  • Bell, G., Neutral macroecology, Science, 2001, vol. 293, pp. 2413–2418.

    Article  Google Scholar 

  • Beloussov, L.V., Mechanoelectric and photon-generating devices in cells and organisms: From molecular machines to macroscopic fields, J. Phys. Conf., 2012a, vol. 345, pp. 012040.

    Article  Google Scholar 

  • Beloussov, L.V., Morphogenesis as a macroscopic selforganizing process, Biosystems, 2012b, vol. 109, no. 3, pp. 262–279.

    Article  Google Scholar 

  • Beloussov, L.V., Morphogenesis can be driven by properly parametrised mechanical feedback, Eur. Phys. J. E, 2013, vol. 36, pp. 132–147.

    Article  Google Scholar 

  • Beloussov, L.V., Morphomechanics of Development, Springer, 2015.

    Book  Google Scholar 

  • Bennett, K.D., Milankovitch cycles and their effects on species in ecological and evolutionary time, Paleobiology, 1990, vol. 16, pp. 11–21.

    Article  Google Scholar 

  • Bennett, K.D., Evolution and Ecology, the Pace of Life, Cambridge: Cambridge Univ. Press, 1997.

    Google Scholar 

  • Bennett, K.D., Continuing the debate on the role of Quaternary environmental changes for macroevolution, Philos. Trans. Roy. Soc. London Ser. B, 2004, vol. 359, pp. 295–303.

    Article  Google Scholar 

  • Benton, M.J., Mass extinction among families of nonmarine tetrapods, Nature, 1985, vol. 30, no. 6031, pp. 611–814.

    Google Scholar 

  • Berg, L.S., Nomogenesis or evolution determined by law, Tr. Geogr. Inst., 1922, vol. 1, pp. 1–321.

    Google Scholar 

  • Berg, L.S., Trudy po teorii evolyutsii (Works on the Theory of Evolution, 1922‒1930), Leningrad: Nauka, 1977.

    Google Scholar 

  • Berg, R.L., Genetika i evolyutsiya (Genetics and Evolution), Novosibirsk: Nauka, 1993.

    Google Scholar 

  • Bertalanffy, L., von, The theory of open systems in physics and biology, Science, 1950, vol. 111, pp. 23–29.

    Article  Google Scholar 

  • Bertalanffy, L., von, General system theory—A critical review, General Systems, 1962, vol. 7, pp. 1–20.

    Google Scholar 

  • Bertalanffy, L., von, General System Theory, New York: Brazziler, 1968.

    Google Scholar 

  • Bertalanffy, L., von, General system theory: Critical review, in Issledovaniya po obshchei teorii sistem: Sbornik perevodov (Studies on the General Theory of Systems: Collection of Translations), Moscow: Progress, 1969, pp. 23–82.

    Google Scholar 

  • Borissiak, A.A., Chalicothere as a biological type, Zool. Zh., 1944, vol. 23, no. 4, pp. 125–134.

    Google Scholar 

  • Boussau, B., Blanquart, S., Nesculea, A., Lartillot, N., and Gouy, M., Parallel adaptations to high temperatures in the Archaen Eon, Nature, 2008, vol. 456, no. 7224, pp. 942–946.

    Article  Google Scholar 

  • Brett, C.E., Ivany, L., and Schopf, K.M., Coordinate stasis: An overview, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1996, vol. 127, pp. 1–20.

    Article  Google Scholar 

  • Brigandt, I. and Love, A.C., Evolutionary novelty and the Evo-Devo synthesis: field notes, Evol. Biol., 2010, vol. 37, pp. 93–99.

    Article  Google Scholar 

  • Brown, T.A., Genomes, 3rd ed., Oxford: Wiley-Liss, 2006.

    Google Scholar 

  • Brunet, M., Guy, F., Pilbeam, D., et al., A new hominid from the Upper Miocene of Chad, Central Africa, Nature, 2002, vol. 418, no. 6894, pp. 145–151.

    Google Scholar 

  • Butler, M.A. and King, A.A., Phylogenetic comparative analysis: A modelling approach for adaptive evolution, Am. Natur., 2004, vol. 164, pp. 683–695.

    Article  Google Scholar 

  • Calow, P., Evolutionary Principles, Glasgow‒London: Blackie, 1983.

    Book  Google Scholar 

  • Cannon, W.B., Physiological regulation of normal states: Some tentative postulates concerning biological homeostatics, in A Charies Richet, Paris: Les Éditions Médicales, 1926, p. 91.

    Google Scholar 

  • Carroll, S.B., Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom, New York: W.W. Norton, 2005.

    Google Scholar 

  • Carroll, S.B., Evolution: God as engineer, Science, 2007, vol. 316, pp. 1427–1728.

    Article  Google Scholar 

  • Carroll, S.B., Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution, Cell, 2008a, vol. 134, pp. 25–36.

    Article  Google Scholar 

  • Carroll, S.B., Frequent and widespread parallel evolution of protein sequences, Mol. Biol. Evol., 2008b, vol. 25, pp. 1943–1953.

    Article  Google Scholar 

  • Carroll, S.B., Grenier, J.K., and Weatherbee, S.D., From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, Malden: Blackwell Sci., 2001.

    Google Scholar 

  • Caswell, J.L., Mallick, S., Richter, D.J., et al., Analysis of chimpanzee history based on genome sequence allignments, PLoS Genet., 2008, vol. 4, no. 4, pp. e1000057.

    Article  Google Scholar 

  • Chaitin, G.J., A theory of program size formally identical to information theory, J. Assoc. Comput. Machin., 1975, vol. 22, pp. 329–340.

    Article  Google Scholar 

  • Charrier, C., Joshi, K., Coutinho-Budd, J., et al., Inhibition of SRGAP2 function by its human-specific paralogs induced neoteny during spine maturation, Cell, 2012, vol. 149, no. 4, pp. 923–935.

    Article  Google Scholar 

  • Cherdantsev, V.G., Morfogenez i evolyutsiya (Morphogenesis and Evolution), Moscow: KMK, 2003.

    Google Scholar 

  • Chernov, G.G., Zakony teoreticheskoi biologii (Laws of Theoretical Biology), Moscow: Znanie, 1990.

    Google Scholar 

  • Chernov, Yu.I., Evolutionary ecology—essence and prospects, Usp. Sovrem. Biol., 1996, vol. 116, no. 3, pp. 277–291.

    Google Scholar 

  • Chernov, Yu.I., Ekologiya i biogeografiya (Ecology and Biogeography), Moscow: KMK, 2006.

    Google Scholar 

  • Chernova, O.F., The origin and evolution of the hair cover, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of Faunal Diversity), Moscow: KMK, 2005, pp. 111–123.

    Google Scholar 

  • Chernykh, V.V., Problema tselostnosti vysshikh taksonov. Tochka zreniya paleontologa (Problem of Integrity of Higher Taxa: Point of View of Paleontologist), Moscow: Nauka, 1986.

    Google Scholar 

  • Chetverikov, S.S., On some aspects of the evolutionary process from the point of view of modern genetics, Zh. Eksperim. Biol. Ser. A, 1926, vol. 2, no. 1, pp. 3–54.

    Google Scholar 

  • Chumakov, N.M., Climatic zonation and climate of the Cretaceous Period, in Klimat v epokhi krupnykh biosfernykh perestroek (Climate during the Epoches of Great Biospheric Reorganization), Moscow: Nauka, 2004, pp. 105–123.

    Google Scholar 

  • Clements, F.E., Plant succession: An analysis of the development of vegetation, Publ. Carnegie Inst., 1916, vol. 242, pp. 7–26.

    Google Scholar 

  • Cope, E.D., The Primary Factors of Organic Evolution, Chicago: Open Court Publ., 1896.

    Book  Google Scholar 

  • Dachin, E., Charmantier, A., Champagne, F.A., et al., Beyond DNA: integrative inclusive inheritance into an extended theory of evolution, Nature Rev. Genet., 2011, vol. 12, pp. 475–486.

    Article  Google Scholar 

  • Darwin, Ch., The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, London: J. Murray, 1859.

    Book  Google Scholar 

  • Darwin, Ch., The Variation of Animals and Plants under Domestication, London: J. Murray, 1868.

    Google Scholar 

  • Darwin, Ch., The Descent of Man and Selection in Relation to Sex, London: J. Murray, 1871, vols. 1 and 2.

    Book  Google Scholar 

  • David, L.A. and Alm, E.J., Rapid evolutionary innovation during an Archaean genetic expansion, Nature, 2011, vol. 469, no. 7328, pp. 93–96.

    Article  Google Scholar 

  • Dawkins, R., The Selfish Gene, New York: Oxford Univ. Press, 1976.

    Google Scholar 

  • Dawkins, R., The Extended Phenotype, New York: Oxford Univ. Press, 1982.

    Google Scholar 

  • Debat, V. and David, P., Mapping phenotypes: Canalization, plasticity and developmental stability, Trends Ecol. Evol., 2001, vol. 16, no. 10, pp. 555–561.

    Article  Google Scholar 

  • Dennis, M.Y., Nuttle, X., Sudmant, P.H., et al., Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication, Cell, 2012, vol. 149, no. 4, pp. 912–922.

    Article  Google Scholar 

  • Depéret, Ch., Les Transformation de Monde Animal, Paris: E. Flammarion, 1907.

    Google Scholar 

  • Devyatkin, E.V., Kainozoi Vnutrennei Azii (Cenozoic of Internal Asia), Moscow: Nauka, 1981.

    Google Scholar 

  • Dobzhansky, Th., Genetics and the Origin of Species, NewYork: Columbia Univ. Press, 1937.

    Google Scholar 

  • Dobzhansky, Th., Genetics of the Evolutionary Process, NewYork: Columbia Univ. Press, 1970.

    Google Scholar 

  • Dodonov, A.E., Chetvertichnyi period Srednei Azii. Stratigrafiya, korrelyatsiya, paleogeografiya (Quaternary Period of Central Asia: Stratigraphy, Correlation, and Paleogeography), Moscow: GEOS, 2002.

    Google Scholar 

  • Dogel, V.A., Oligomerizatsiya gomologichnykh organov kak odin iz glavnykh putei evolyutsii zhivotnykh (Oligomerization of Homologous Organs As One of the Main Pathways of Evolution in Animals), Leningrad: Leningr. Gos. Univ., 1954.

    Google Scholar 

  • Dollo, L., Les lois de l’evolution, Bull. Soc. Belge Geol., Paleontol. Hydrol., 1893, vol. 7, pp. 164–166.

    Google Scholar 

  • Dohrn, A., Der Ursprung der Wirbeltiere und das Prinzip des Functionswechsel, Leipzig: Verlag von F.C.W. Vogel, 1875.

    Google Scholar 

  • Dohrn, A., Proiskhozhdenie pozvonochnykh zhivotnykh i printsip smeny funktsii (Origin of Vertebrates and the Principle of Replacement of Functions), Moscow‒Leningrad: Biomedgiz, 1937.

    Google Scholar 

  • Driesch, H., The Science and Phylosophy of the Organism, London: Black, 1908.

    Google Scholar 

  • Dubinin, N.P., Evolyutsiya populyatsii i radiatsiya (Evolution of Populations and Radiation), Moscow: Atomizdat, 1966.

    Google Scholar 

  • Dubinin, N.P., Obshchaya genetika (General Genetics), Moscow: Nauka, 1970.

    Google Scholar 

  • Duvigneaux, P. and Tang, M., Biosfera i mesto v nei cheloveka (ekologicheskie sistemy i biosfera) (Biosphere and the Place of Man in It: Ecological Systems and the Biosphere), Moscow: Progress, 1973.

    Google Scholar 

  • Dylis, N.V., Osnovy biogeotsenologii (Foundation of Biogeocoenology), Moscow: Mosk. Gos. Univ., 1978.

    Google Scholar 

  • Ebeling, V., Obrazovanie struktur pri neobratimykh protsessakh (Formation of Structures at Irreversible Processes), Moscow: Mir, 1979.

    Google Scholar 

  • Ebeling, V., Engel’, A., and Faistel’, Z., Fizika protsessov evolyutsii (Physics of Evolutionary Processes), Moscow: URSS, 2001.

    Google Scholar 

  • Eimer, T., Orthogenesis der Schmetterlinge, Leipzig: Engelmann, 1897.

    Google Scholar 

  • Elbe, G.J., The macroevolution of phenotypic integration, in Phenotypic Integration: Studying of the Ecology and Evolution of Complex Phenotypes, Pigliucci M. and Preston, K., Eds., New York: Oxford Univ. Press, 2004, pp. 253–273.

    Google Scholar 

  • Eldar, A., Chary, V.K., Xenopoulos, P., et al., Partial penetrance facilitates developmental evolution in bacteria, Nature, 2009, vol. 460, pp. 510–514.

    Google Scholar 

  • Eldredge, N., Macroevolutionary Dinamics: Species, Niches and Adaptive Peaks, New York: McGraw-Hill, 1989.

    Google Scholar 

  • Eldredge, N. and Cracraft, J., Phylogenetic Patterns and Evolutionary Process, New York: Columbia Univ. Press, 1980.

    Google Scholar 

  • Eldredge, N. and Gould, S.J., Punctuated equilibria: An alternative to phyletic gradualism, in Models in Paleobiology, Schopf, T.J.M., Ed., San Francisco: Freeman, Cooper, 1972, pp. 82–115.

    Google Scholar 

  • Eldredge, N., Thompson, J.N., Brakefield, P.M., et al., The dynamic of evolutionary stasis, Paleobiology, 2005, vol. 31, no. 2, pp. 122–145.

    Google Scholar 

  • Emerson, B.C. and Gillespie, R.G., Phylogenetic analysis of community assembly and structure over space and time, Trends Ecol. Evol., 2008, vol. 23, pp. 619–630.

    Article  Google Scholar 

  • Erwin, D.H., Macroevolution: Seeds of diversity, Science, 2005, vol. 308, pp. 1752–1753.

    Article  Google Scholar 

  • Erwin, D.H., Microevolution and macroevolution are not governed by the same processes, in Contemporary Debates in Philosophy of Biology, Ayala, F. and Arp, R., Eds., Malden: Wiley-Blackwell, 2010, pp. 180–193.

    Google Scholar 

  • Erwin, D.H., Macroevolution: Dynamics of diversity, Curr. Biol., 2011, vol. 21, no. 24, pp. R1000–1001.

    Article  Google Scholar 

  • Eskov, K.Yu., Istoriya Zemli i zhizni na nei (History of the Earth and Life on It), Moscow: MIROS‒MAIK Nauka/Interperiodika, 2000.

    Google Scholar 

  • Fan, Y., Huang, Zh.-Y., Cao, Ch.-Ch., et al., Genome of the Chinese tree shrew, Nature Com., 2013, vol. 4, no. 1486, pp. 1–9.

    Google Scholar 

  • Fedonkin, M.A., Besskeletnaya fauna venda i ee mesto v evolyutsii metazoa (Skeletonless fauna of the Vendian and its place in THE evolution OF Metazoa), Moscow: Nauka, 1987.

    Google Scholar 

  • Fedonkin, M.A., Neopterozoic ecosystem restructuring: From net to pyramid, in Phanerozoic Global Bio-events and Event-Stratigraphy: 5th International Conference on Bio- Events: Abstract, Gottingen, 1992, pp. 33–34.

    Google Scholar 

  • Fedonkin, M.A., The origin of the Metazoa in the light of the Proterozoic fossil record, Paleontol. Res., 2003, vol. 7, no. 1, pp. 9–41.

    Article  Google Scholar 

  • Fedonkin, M.A., Two chronicles of life: Attempt to comparison (paleobiology and genomics on the early stages of evolution of th Biosphere), in Problemy geologii i mineralogii (Problems of Geology and Mineralogy), Syktyvkar: Geoprint, 2006, pp. 331–350.

    Google Scholar 

  • Fedonkin, M.A., Heavy metal of biogenesis, in Populyarnaya mekhanika (Popular Mechanics), 2011, vol. 3, pp. 4–44.

    Google Scholar 

  • Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

    Book  Google Scholar 

  • Folsome, C.E., Proiskhozhdenie zhizni. Malen’kii teplyi vodoem (The Origin of Life: A Warm Little Pond), Moscow: Mir, 1982.

    Google Scholar 

  • Fortelius, M., Eronen, J.T., Jernvall, J., et al., Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years, Evol. Ecol. Res., 2002, no. 4, pp. 1005–1016.

    Google Scholar 

  • Fortelius, M., Eronen, J.T., Kaya, F., et al., Evolution of Neogene mammals in Eurasia: Environmental forcing and biotic interactions, Ann. Rev. Earth Planet. Sci., 2014, vol. 42, pp. 579–604.

    Article  Google Scholar 

  • Fortelius, M., Geritz, S., Gyllenberg, M., and Toivonen, J., Adaptive dynamics on an environmental gradient that changes over geological time-scale, J. Theor. Biol., 2015, vol. 376, pp. 91–104.

    Article  Google Scholar 

  • Fraser, D., Gorelick, R., and Rybczynski, N., Macroevolution and climate change influence community assembly of North American hoofed mammals, Biol. J. Linn. Soc., 2015, vol. 114, pp. 485–494.

    Article  Google Scholar 

  • Frommlet, F., Bogdan, M., and Ramsey, D., Phenotype and Genotypes, London: Springer, 2016.

    Book  Google Scholar 

  • Futuyama, D.J., Can modern evolutionary theory explain macroevolution?, in Macroevolution. Explanation, Interpretation and Evidence, Serrelli, E. and Gontier, N., Eds., Switzerland: Springer Intern. Publ., 2015, pp. 29–86.

    Google Scholar 

  • Gabunia, L., Vekua, A., Lordkipanidze, D., et al., Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age, Science, 2000, vol. 288, pp. 1019–1025.

    Google Scholar 

  • Gilbert, S.F., Opits, D.M., and Reff, R.A., New synthesis of evolutionary biology and developmental biology, Ontogenez, 1997, vol. 28, no. 5, pp. 325–343.

    Google Scholar 

  • Gilyarov, A.M., A search for universal patterns of the organization of communities, progress on the pathway of neutrality, Zh. Obshch. Biol., 2010, vol. 71, no. 5, pp. 386–401.

    Google Scholar 

  • Gilyarov, M.S., Patterns and directions of phylogeny, Zh. Obshch. Biol., 1970, vol. 31, no. 2, pp. 179–188.

    Google Scholar 

  • Gilyarov, M.S., Feedbacks and directions of the evolutionary process, Vest. Akad. Nauk SSSR, 1977, no. 8, pp. 68–76.

    Google Scholar 

  • Gilyarov, M.S., Ed., Biologicheskii entsiklopedicheskii slovar’ (Biological Encyclopedic Dictionary), Moscow: Sovet. Entsiklop., 1986.

    Google Scholar 

  • Goldschmidt, R., The Material Basis of Evolution, New Haven: Yale Univ. Press, 1940.

    Google Scholar 

  • Goldschmidt, R., Theoretical Genetics, Berkeley: Univ. California Press, 1955.

    Book  Google Scholar 

  • Goldsmith, E., Thermodynamics or ecodynamycs, Ecologist, 1981, vol. 11, no. 4, pp. 178–195.

    Google Scholar 

  • Gómez-Robles, A., Paleoanthropology: The dawn of Homo florensianus, Nature, 2016, vol. 534, pp. 188–189.

    Article  Google Scholar 

  • Gordon, I.J. and Prins, H.H., Eds., The Ecology of Browsing and Grazing, Springer, 2008.

    Book  Google Scholar 

  • Gould, S.J., Ontogeny and Phylogeny, Cambridge, MA: Harvard Univ. Press, 1977.

    Google Scholar 

  • Gould, S.J., Change in developmental timing as a mechanism of macroevolution, in Evolution and Development, Bonner, J.T. Ed., Berlin: Springer, 1982, pp. 337–346.

    Google Scholar 

  • Gould, S.J., Tempo and mode in macroevolutionary reconstruction on Darwinism, Proc. Nat. Acad. Sci. USA, 1994, vol. 15, no. 15, pp. 6764–6771.

    Article  Google Scholar 

  • Gould, S.J., The Structure of Evolutionary Theory, Cambridge MA‒London: Belknap Press of Harvard Univ. Press, 2002.

    Google Scholar 

  • Gould, S.J., Punctuated Equilibrium, Cambridge, MA: Harvard Univ. Press, 2007.

    Google Scholar 

  • Gould, S.J. and Eldredge, N., Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology, 1977, no. 3, pp. 115–151.

    Article  Google Scholar 

  • Graham, C.H. and Fine, P.V.A., Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time, Ecol. Lett., 2008, no. 11, pp. 1265–1277.

    Article  Google Scholar 

  • Graham, R.W. and Lundelieus, E.L., Coevolutionary disequilibrium and Pleistocene extinction, in Quaternary Extinctions: A Prehistoric Revolution, Martin, P.S., Klein, R.G., Eds., Tucson: Univ. Arizona Press, 1984, pp. 223–249.

    Google Scholar 

  • Grant, V.M., Evolyutsiya organizmov (Evolution of Organisms), Moscow: Mir, 1980.

    Google Scholar 

  • Grantham, T., Is macroevolution more than successive rounds of microevolution?, Palaeontology, 2007, vol. 50, no. 1, pp. 75–85.

    Article  Google Scholar 

  • Green, R.E., Malaspinas, A.-S., Krause, J., et al., A complete neandertal mitochondrial genome sequence determined by high-throughput sequencing, Cell, 2008, vol. 134, pp. 416–426.

    Article  Google Scholar 

  • Gregory, W.K., The order of mammals, Bull. Am. Mus. Natur. Hist., 1910, no. 27, pp. 1–524.

    Google Scholar 

  • Grin, B., Elegantnaya vselennaya. Superstruny, skrytye razmernosti i poiski okonchatel’noi teorii (Elegant Universe: Superstrings, Latent Dimensions, and a Search for a Final Theory), Moscow: URSS, 2004.

    Google Scholar 

  • Grinin, L.E., Markov, A.V., and Korotaev, A.V. Makroevolyutsiya v zhivoi prirode i obshchestve (Macroevolution in Wildlife and Society), Moscow: URSS, 2008.

    Google Scholar 

  • Grinnell, J., The niche relationships of the Californian thrasher, Auk, 1917, vol. 34, pp. 427–433.

    Article  Google Scholar 

  • Gromov, V.I., Paleontological and archeological substantiation of the stratigraphy of the Quaternary Period in the territory of the USSR, Tr. Inst. Geol. Nauk Akad. Nauk SSSR, Ser. Geol., 1948, vol. 64, no. 17, pp. 1–524.

    Google Scholar 

  • Groombridge, B. and Jenkins, M., Global Biodiversity, Earth’s living resources in the 21th century, Cambridge: World Conserv. Monitor. Center. Hoechst Found., 2000.

    Google Scholar 

  • Haeckel, E., Generalle Morphologie der Organismen, Berlin: Reimer, 1866, vols. 1 and 2.

    Book  Google Scholar 

  • Haeckel, E., Systematische Phylogenie, Berlin: Reimer, 1894–1896, vols. 1 and 2.

    Google Scholar 

  • Haldane, J.B.S., The Causes of Evolution, London‒New York: Longmans, Green, 1932.

    Google Scholar 

  • Haldane, J.B.S., The part plated by recurrent mutation in evolution, Am. Natur., 1933, vol. 67, pp. 5–19.

    Article  Google Scholar 

  • Hall, B.K., Evolutionary Developmental Biology, London‒New York: Chapman and Hall, 1992.

    Book  Google Scholar 

  • Hannisdal, B. and Peters, S.E., Phanerozoic Earth system evolution and marine biodiversity, Science, 2011, vol. 334, pp. 1121–1124.

    Article  Google Scholar 

  • Hennig, W., Phylogenetic Systematics, Urbana: Illinois Univ. Press, 1966.

    Google Scholar 

  • Herman, A.B., Pozdnemelovoi klimat Evrazii i Alyaski (po paleobotanicheskim dannym) (Late Cretaceous Climate of Eurasia and Alaska Based on Paleobotanic Data), Moscow: Nauka, 2004.

    Google Scholar 

  • Hernández Fernández, M.H. and Vrba, E., Macroevolutionary processes and biomic specialization: Testing the resource-use hypothesis, Evol. Ecol., 2005, vol. 19, pp. 199–219.

    Article  Google Scholar 

  • Hittinger, C.T. and Carroll, S.B., Gene duplication and the adaptive evolution of a classic genetic switch, Nature, 2007, vol. 449, pp. 677–681.

    Article  Google Scholar 

  • Holliday, R., Mechanisms for the control of gene activity during development, Biol. Rev. Sambr. Philos. Soc., 1990, vol. 65, pp. 431–471.

    Article  Google Scholar 

  • Humboldt, A., von, Kosmos, Stuttgart: Tubingen, 1845‒1862, vols. 1–5.

    Google Scholar 

  • Hutchinson, G.E., The niche: Abstractly inhabited hypervolume, in The Ecological Theatre and the Evolutionary Play, New Haven: Yale Univ. Press, 1965, pp. 26–78.

    Google Scholar 

  • Huxley, J.S., Progress, biological and other, in Essays of a Biologist, London: Chatto and Windus, 1923, pp. 1–64.

    Chapter  Google Scholar 

  • Huxley, J.S., Natural selection and evolutionary progress, Rep. Brit. Ass. Adv. Sci., 1936, vol. 106, pp. 81–100.

    Google Scholar 

  • Huxley, J.S., Towards the new systematics, in The New Systematics, London: Clarendon Press, 1940, pp. 3–41.

    Google Scholar 

  • Huxley, J.S., Evolution: The Modern Synthesis, London: Allen and Unwin, 1942.

    Google Scholar 

  • Huxley, J.S., The three types of evolutionary process, Nature, 1957, vol. 180, no. 4584, pp. 454–455.

    Article  Google Scholar 

  • Huxley, J.S., Evolutionary processes and taxonomy with special reference to grades, Uppsala Univ. Arsskr., 1958, no. 6, pp. 21–39.

    Google Scholar 

  • Huxley, T.H., On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia, Proc. Zool. Soc. London, 1880, vol. 43, pp. 649–662.

    Google Scholar 

  • IHGSC, Initial sequencing and analysis of the human genome, Nature, 2001, vol. 499, no. 6822, pp. 860–921.

    Google Scholar 

  • Inge-Vechtomov, S.G., Ecological genetics and the theory of evolution, Vest. Vseross. Obshch. Genet. Selekts., 2009, vol. 13, no. 2, pp. 362–371.

    Google Scholar 

  • Iordansky, N.N., Makroevolyutsiya. Sistemnaya teoriya (Macroevolution: System Theory), Moscow: Nauka, 1994.

    Google Scholar 

  • Iordansky, N.N., Evolyutsiya zhizni (Evolution of Life), Moscow: Akademiya, 2001.

    Google Scholar 

  • Iordansky, N.N., Macroevolution: Macrogenesis and typogenesis, Zh. Obshch. Biol., 2004, vol. 65, no. 6, pp. 451–463.

    Google Scholar 

  • Ivakhnenko, M.F., Permskie parareptilii (Permian Parareptiles), Moscow: Nauka, 1987.

    Google Scholar 

  • Ivakhnenko, M.F., Morphology of the Gorgonopidae (Eotherapsida) and tetrapod communities in the Late Paleozoic, Paleontol. J., 2005, vol. 39, suppl. No. 4, pp. 393–511.

    Google Scholar 

  • Ivakhnenko, M.F., Cranial morphology of the Dinomorpha (Eotherapsida), Paleontol. J., 2008, vol. 42, suppl. no. 9, pp. 859–995.

    Google Scholar 

  • Ivakhnenko, M.F., Sennikov, A.G., Tatarinov, L.P., Averianov, A.O., and Arkhangelsky, M.S., Iskopaemye reptilii i ptitsy (Fossil Reptiles and Birds), Ivakhnenko, M.F. and Kurochkin, E.N., Eds., Moscow: GEOS, 2008.

    Google Scholar 

  • Jablonska, E. and Gal, R., Transgeneration epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, vol. 84, no. 2, pp. 131–176.

    Article  Google Scholar 

  • Jablonska, E. and Lamb, M.J., Epigenetic Inheritance and Evolution: Lamarkian Dimension, Oxford; New York; Tokio: Oxford Univ. Press, 1995.

    Google Scholar 

  • Jablonska, E. and Lamb, M.J., Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life, Cambridge‒London: MIT Press, 2005.

    Google Scholar 

  • Jablonska, E. and Lamb, M.J., Soft inheritance: Challenging the modern synthesis, Genet. Mol. Biol., 2008, vol. 38, pp. 389–395.

    Article  Google Scholar 

  • Jablonski, D., Mass extinction and evolution, Paleobiology, 2005, vol. 31, pp. 192–210.

    Article  Google Scholar 

  • Jablonski, D., Scale and hierarchy in macroevolution, Palaentology, 2007, vol. 50, no. 1, pp. 67–109.

    Google Scholar 

  • Jablonski, D., Biotic interaction and macroevolution: Extensions and mismatches across scales and levels, Evolution, 2008, vol. 62, pp. 715–739.

    Article  Google Scholar 

  • Janes, D.E., Organ, C.L., Fujita, M.K., et al., Genome evolution in Reptilia, the sister group of mammals, Ann. Rev. Genom. Human Genet., 2010, vol. 11, pp. 239–264.

    Article  Google Scholar 

  • Janis, C., Tertiary mammal evolution in the context of changing climate, vegetation, and tectonic events, Ann. Rev. Ecol. Syst., 1993, vol. 24, pp. 467–500.

    Article  Google Scholar 

  • Janis, C., Tectonics, climate changes, and the evolution of mammalian ecosystems, in Evolution on Planet Earth: The Impact of the Physical Environment, London: Acad. Press, 2003, pp. 319–338.

    Chapter  Google Scholar 

  • Jarvik, E., Théories de l’Evolution des Vertebres. Reconsidérées a la Lumière des Récentes Découvertes sur les Vertébres Inférieurs, Paris: Masson et Cie, 1960.

    Google Scholar 

  • Ji, Q., Luo, Z.X., Yuan, C.X., and Tabrum, A.R., A swimming mammalian from the Middle Jurassic and ecomorphological diversification of early mammals, Science, 2006, vol. 311, no. 5764, pp. 1123–1127.

    Article  Google Scholar 

  • Kaifu, Y., Kono, R.T., Sutikna, Th., et al., Unique dental morphology of Homo florensianus and its evolutionary implications, PloS One, 2015. November 18. DOI:, pp. 1–27. doi 10.137/journal.pone.0141614

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S., Jurassic ecological crisis of community of terrestrial tetrapods and the heuristic model of the coupled evolution of community and biota, in Problemy doantropogenovoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 60–95.

    Google Scholar 

  • Kauffman, S.A., The Origin of Order: Self-organization in Evolution, New York: Oxford Univ. Press, 1993.

    Google Scholar 

  • Kauffman, S.A., At Home in the Universe: The Search for Laws of Self-organization and Complexity, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  • Khanski, I., Uskol’zayushchii mir. Ekologicheskie posledstviya utraty mestoobitanii (Vanishing World: Ecological Consequences of the Loss of Habitats), Moscow: KMK, 2010.

    Google Scholar 

  • Kholland, P., Hox genes, evolution of development and the origin of vertebrates, Ontogenez, 1996, vol. 27, no. 4, pp. 245–256.

    Google Scholar 

  • Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  • Kolchanov, N.A. and Suslov, V.V., Coding and evolution of complexity of biological organization, in Evolyutsiya biosfery i raznoobraziya (Evolution of the Biosphere and Diversity), Moscow: KMK, 2006, pp. 60–96.

    Google Scholar 

  • Kolchanov, N.A., Suslov, V.V., and Ponomarenko, M.P., Evolution in possibility space: Darwin and Vavilov, in Charl’z Darvin i sovremennaya biologiya (Charles Darvin and Modern Biology), St. Petersbourg: Nestor-istoriya, 2010, pp. 61–75.

    Google Scholar 

  • Kolmogorov, A.N., Teoriya informatsii i teoriya algoritmov (Theory of Information and Theory of Algorithms), Moscow: Nauka, 1987.

    Google Scholar 

  • Korochkin, L.I., Problems of evolution and A. Lima-de-Faria’s book, in Evolyutsiya bez otbora (Evolution without Selection), Moscow: Mir, 1991, pp. 378–408.

    Google Scholar 

  • Korochkin, L.I., Hopeful monsters and jumping genes, Evolucion Biologica, 1993, vol. 7, pp. 153–172.

    Google Scholar 

  • Korochkin, L.I., Biologiya individkal’nogo razvitiya (geneticheskii aspekt) (Biology of Individual Development (Genetic Aspect)), Moscow: Mosk. Gos. Univ., 2002a.

    Google Scholar 

  • Korochkin, L.I., Ontogeny, evolution and genes, Priroda (Moscow), 2002b, no. 7, pp. 10–19.

    Google Scholar 

  • Koshiba-Takeuchi, K., Mori, A.D., Kaynak, B.L., et al., Reptilian heart development and molecular basis of cardic chamber evolution, Nature, 2009, vol. 461, pp. 95–98.

    Article  Google Scholar 

  • Kowalevsky, A.O., Die Entwickelunsgeschichte des Amphioxus lanceolatus, Mem. Acad. St. Peterb. Seventh Ser., 1867, vol. 11, no. 4, pp. 1–17.

    Google Scholar 

  • Kowalevsky, V.O., Osteology of two fossil species from the ungulate group, Entelodon and Gelocus, Izv. Imp. Ob-va Lyubit. Estestvoznan. Antropol. Etnogr., 1875, vol. 16, pp. 1–59.

    Google Scholar 

  • Krassilov, V.A., Theory of evolution: Necessity of new synthesis, in Evolyutsionnye issledovaniya. Makroevolyutsiya (Evolutionary Studies: Macroevolution), Vladivostok: Dalinevost. Nauchn. Tsentr Akad. Nauk SSSR, 1984, pp. 4–12.

    Google Scholar 

  • Krassilov, V.A., Melovoi period. Evolyutsiya zemnoi kory i biosfery (Cretaceous Period: Evolution of the Earth Crust and Biosphere), Moscow: Nauka, 1985.

    Google Scholar 

  • Krassilov, V.A., Nereshennye problemy teorii evolyutsii (Unresolved Problems of the Theory of Evolution), Vladivostok: Dalinevost. Nauchn. Tsentr Akad. Nauk SSSR, 1986.

    Google Scholar 

  • Krassilov, V.A., Metaekologiya (Metaecology), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 1997.

    Google Scholar 

  • Krassilov, V.A., Model of the biospheric crises, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganizations and Evolution of the Biosphere), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2001, pp. 9–16.

    Google Scholar 

  • Krause, J., Fu, Q., Good, J.M., et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia, Nature, 2010, vol. 464, pp. 894–897.

    Article  Google Scholar 

  • Kurochkin, E.N., Basal diversification of feathered creatures, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 219–232.

    Google Scholar 

  • Kutschera, U. and Niklas, K.J., The modern theory of biological evolution: An expanded synthesis, Naturwissenschaften, 2004, vol. 91, no. 6, pp. 255–276.

    Article  Google Scholar 

  • Laland, K., Uller, T., Feldman, M., et al., Does evolutionary theory need a rethink?, Nature, 2014, vol. 514, no. 7521, pp. 161–164.

    Article  Google Scholar 

  • Lamarck, J.-B., Philosophie Zoologique, ou Exposition des Considerations Relativesà l’Histoire Naturelle des Animaux, Paris: Bailliere, 1809, vols. 1 and 2.

    Google Scholar 

  • Lamarck, J.-B., Histoire Naturelle des Animaux sans Vertèbres, Présentant les Caractéres Généraux et Particuliers de ces Animaux, Paris, 1815–1822, vols. 1–7.

    Google Scholar 

  • Lane, A. and Benton, M., Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve, Am. Natur., 2003, vol. 162, pp. 265–276.

    Article  Google Scholar 

  • Lawing, A.M., Head, J.J., and Polly, P.D., The ecology of morphology: The ecometrics of locomotion and macroenvironment in North American snakes, in Paleontology in Ecology and Conservation, Louys, J., Ed., Berlin: Springer-Verlag, 2012, pp. 117–146.

    Chapter  Google Scholar 

  • Lawing, A.M. and Polly, P.D., Pleistocene climate, phylogeny, and climate envelope models: An integrative approach to better understand species’ response to climate change, PLoS One, 2011, vol. 16, p. e28554.

    Article  Google Scholar 

  • Lawrence, D., Fiegna, F., Behrends, V., et al., Species interactions alter evolutionary responses to a novel environment, PLoS Biol., 2012, vol. 10, no. 5, p. e 1001330.

    Article  Google Scholar 

  • Leakey, M.G., Spoor, F., Christopher Dean, M., et al., New fossil from Koobi For in northern Kenya confirm taxonomic diversity in early Homo, Nature, 2012, vol. 488, no. 7410, pp. 201–204.

    Article  Google Scholar 

  • Legendre, S., Analysis of mammalian communities from the Late Eocene and Oligocene of southern France, Palaeovertebrata, 1986, vol. 16, pp. 191–212.

    Google Scholar 

  • Letunic, I., Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation, Bioinformatics, 2007, vol. 23, no. 1, pp. 127–128.

    Article  Google Scholar 

  • Levine, M. and Davidson, E.H., Gene regulatory networks for development, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, no. 14, pp. 4936–4942.

    Article  Google Scholar 

  • Levinton, J.S., Genetics, Paleontology, and Macroevolution, New York: Cambridge Univ. Press, 1987.

    Google Scholar 

  • Lewontin, R.C., The Genetic Basis of Evolutionary Changes, New York: Columbia Univ. Press, 1974.

    Google Scholar 

  • Lewontin, R.C., The organism as subject and object of evolution, Scientia, 1983, vol. 188, pp. 65–82.

    Google Scholar 

  • Lima-de-Faria, A., Evolution without Selection: Form and Function by Autoevolution, Amsterdam, New York, Oxford: Elsevier, 1988.

    Google Scholar 

  • Lindblad-Toh, K., Garber, M., Zuk, O., et al., A high-resolution map of human evolutionary constraint using 29 mammals, Nature, 2011, vol. 478, pp. 476–481.

    Article  Google Scholar 

  • Lister, A.M., The impact of Quaternary ice ages on mammalian evolution, Philos. Transact. Royal Soc. B, 2004, vol. 359, pp. 221–241.

    Article  Google Scholar 

  • Lister, A.M., Behavioural leads in evolution: Evidence from the fossil records, Biol. J. Linnean. Soc., 2014, vol. 112, pp. 315–331.

    Article  Google Scholar 

  • Long, J.F., Heterochrony and the origin of tetrapods, Lethaia, 1990, vol. 23, pp. 157–166.

    Article  Google Scholar 

  • Lopatin, A.V., Early Paleocene insectivore mammals of Asia and establishment of the major groups of Insectivora, Paleontol. J., 2006, vol. 40, suppl. no. 3, pp. 206–406.

    Google Scholar 

  • Lowe, C.B., Kellis, M., Siepel, A., et al., Three periods of regulatory innovation during vertebrate evolution, Science, 2011, vol. 333, pp. 1019–1024.

    Article  Google Scholar 

  • Luo, Z.X., Transformation and diversification in early mammal evolution, Nature, 2007, vol. 450, no. 7172, pp. 1011–1019.

    Article  Google Scholar 

  • Luo, Z.-X., Crompton, A.W., and Sun, A.-L., A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics, Science, 2001, vol. 292, no. 5521, pp. 1535–1539.

    Article  Google Scholar 

  • MacArthur, R., The theory of the niche, in Population Biology and Evolution, Syracuse: Syracuse Univ. Press, 1968, pp. 159–176.

    Google Scholar 

  • MacArthur, R.H., Geographical Ecology: Patterns in the Distribution of Species, New York: Harper and Row, 1972.

    Google Scholar 

  • Maderson, P.F.A., Alberch, P., Goodwin, B.C., et al., The role of development in macroevolutionary change, in Evolution and Development, Berlin: Springer, 1982.

    Google Scholar 

  • Mamkaev, Yu.V., Methods and patterns of evolutionary morphology, in Sovremennaya evolyutsionnaya morfologiya (Modern Evolutionary Morphology), Kiev: Nauk. Dumka, 1991, pp. 88–103.

    Google Scholar 

  • Margelis, L., Rol’ simbioza v evolyutsii kletki (Role of Symbiosis in the Evolution of the Cell), Moscow: Mir, 1983.

    Google Scholar 

  • Markov, A.V., Return of the Red Queen, or the pattern of the growth of the average lifespan of genera in the course of evolution, Zh. Obshch. Biol., 2000, vol. 61, no. 4, pp. 357–370.

    Google Scholar 

  • Markov, A.V., On the growth mechanisms of taxonomic diversity in the marine biota in the Phanerozoic, Paleontol. Zh., 2002, no. 2, pp. 3–13.

    Google Scholar 

  • Markov, A.V., Relationships of taxa of different ranks in the fossil record and reconstruction of species diversity of the marine biota in the Phanerozoic, Paleontol. Zh., 2003, no. 2, pp. 1–10.

    Google Scholar 

  • Markov, A.V., Problem of the origin of eukaryotes, Paleontol. Zh., 2005, no. 2, pp. 3–12.

    Google Scholar 

  • Markov, A.V., Rozhdenie slozhnosti (Birth of Complexity), Moscow: CORPUS Astrel’, 2010.

    Google Scholar 

  • Markov, A.V. and Korotaev, A.V., Hyperbolic growth of diversity of marine and continental biotas in the Phanerozoic and evolution of communities, Zh. Obshch. Biol., 2008, vol. 69, no. 3, pp. 175–194.

    Google Scholar 

  • Markov, A.V. and Korotaev, A.V., Giperbolicheskii rost v zhivoi prirode i obshchestve (Hyperbolic Growth in Wildlife and Society), Moscow: URSS, 2009.

    Google Scholar 

  • Markov, A.V. and Naimark, E.B., Kolichestvennye zakonomernosti makroevolyutsii. Opyt primeneniya sistemnogo podkhoda k analizu razvitiya nadvidovykh taksonov (Quantitative Patterns of Macroevolution: Attempt at the Application of the System Approach to the Analysis of Development of Superspecies Taxa), Moscow: GEOS, 1998.

    Google Scholar 

  • Markov, A.V. and Naimark, E.B., Evolyutsiya cheloveka (Evolution of the Man), vol. 1: Obez’yany, kosti i geny (Monkeys, Bones, and Genes); vol. 2: Obez’yany, neirony i dusha (Monkeys, Neurons and Soul), Moscow: CORPUS Astrel’, 2011.

    Google Scholar 

  • Markov, A. and Naimark, E., Evolyutsiya. Klassicheskie idei v svete sovremennykh dannykh (Evolution: Classical Ideas in View of Modern Data), Moscow: Ast, 2014.

    Google Scholar 

  • Markova, A.K., van Kolfschoten, T., Bohncke, S., et al., Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24‒8 tys. l. n.) (Evolution of European Ecosystems during the Pleistocene‒Holocene Transitions, 24‒8 ka), Moscow: KMK, 2008.

    Google Scholar 

  • Marshall, E., Biofizicheskaya khimiya (Biophysical Chemistry), Moscow: Nauka, 1981, vols. 1 and 2.

    Google Scholar 

  • Matthew, W.D., Climate and evolution, Ann. New York: Acad. Sci., 1915, vol. 24, pp. 171–318.

    Article  Google Scholar 

  • Matveev, B.S., Questions of the problem of relationships between ontogeny and a phylogeny, Izv. Akad. Nauk SSSR, Ser. Biol., 1937, no. 1, pp. 3–42.

    Google Scholar 

  • Matveev, B.S., Significance of A.N. Severtsov’s ideas concerning the doctrine of the progress and recourse in evolution of animals for modern biology, in Glavnye napravleniya evolyutsionnogo progressa (Mainstream of the Evolutionary Progress), Moscow: Mosk. Gos. Univ., 1967, pp. 140–172.

    Google Scholar 

  • Mayr, E., Sistematics and the Origin of Species, New York: Columbia Univ. Press, 1942.

    Google Scholar 

  • Mayr, E., Sistematika i proiskhozhdenie vidov s tochki zreniya zoologa (Systematics and Origin of Species from the Point of View of the Zoologist), Moscow: Inostr. Lit., 1947.

    Google Scholar 

  • Mayr, E., Animal Species and Evolution, Cambridge, MA: Harvard Univ. Press, 1963.

    Book  Google Scholar 

  • Mayr, E., Classification and phylogeny, Am. Zool., 1965, vol. 5, no. 1, pp. 165–174.

    Article  Google Scholar 

  • Mayr, E., Zoologicheskii vid i evolyutsiya (Zoological Species and Evolution), Moscow: Mir, 1968.

    Google Scholar 

  • Mayr, E., Printsipy zoologicheskoi sistematiki (Principles of Zoological Systematics), Moscow: Mir, 1971.

    Google Scholar 

  • Mayr, E., Populyatsiya, vidy i evolyutsiya (Population, Species, and Evolution), Moscow: Mir, 1974.

    Google Scholar 

  • Mayr, E., Towards a New Philosophy of Biology: Observations of an Evolutionist, Cambridge, MA: Harvard Univ. Press, 1988.

    Google Scholar 

  • Mayr, E., What Evolution Is: From Theory to Fact, NewYork: Basic Books, 2001.

    Google Scholar 

  • McGill, B.J., Enquist, B.J., Weiher, E., and Westoby, M., Rebuilding community ecology from functional traits, Trends Ecol. Evol., 2006, vol. 21, pp. 178–186.

    Article  Google Scholar 

  • McPeek, M.A., The macroevolutionary consequences of ecological differences among species, Palaeontology, 2007, vol. 50, pp. 111–129.

    Article  Google Scholar 

  • Mednikov, B.M., On the reality of the higher taxonomic categories, Zh. Obshch. Biol., 1974, vol. 35, no. 5, pp. 659–665.

    Google Scholar 

  • Meyen, S.V., Problem of the directionality of evolution, in Zoologiya pozvonochnykh (Zoology of Vertebrates), Moscow: VINITI, 1975, vol. 7, pp. 66–117.

    Google Scholar 

  • Meyen, S.V., Prediction in biology and levels of system organization in living creatures, in Biologiya i sovremennoe nauchnoe znanie (Biology and Modern Scientific Knowledge), Moscow: Nauka, 1980, pp. 103–120.

    Google Scholar 

  • Meyer, M., Fu, Q., Aximu-Petri, A., et al., A mitochondrial genome sequence of a hominin from Sima de los Huesos, Nature, 2013, vol. 505, pp. 403–406.

    Article  Google Scholar 

  • Mikhailov, K.E., Morphogenesis and ecogenesis in the evolution of birds: Nonidentity and its consequences, in Doklady XIV ornitologicheskoi konferents Severnoi Evrazii (Reports of the XIV Ornithological Conference of Northern Eurasia), 2015, pp. 181–204.

    Google Scholar 

  • Mikkelsen, T.S., Hillier, L.W., Eichler, E.E., et al., Initial sequence of the chimpanzee genome and comparison with the human genome, Nature, 2005, vol. 437, no. 7055, pp. 69–87.

    Article  Google Scholar 

  • Monaco, G., van, Dam, S., Casal Novo Ribeiro, J.L., et al., A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels, BMC Evol. Biol., 2015, vol. 15, no. 1, p. 259.

    Article  Google Scholar 

  • Moszek, A.P., Sears, K.E., Stollewerk, A., et al., The significance and scope of the evolutionary biology: A vision for the 21st century, Evol. Develop., 2015, vol. 17, pp. 198–219.

    Article  Google Scholar 

  • Nazarov, V.I., Uchenie o makroevolyutsii. Na putyakh k novomu sintezu (Doctrine of Macroevolution: On the Pathway to New Synthesis), Moscow: Nauka, 1991.

    Google Scholar 

  • Nazarov, V.I., Evolyutsiya ne po Darvinu: smena evolyutsionnoi modeli (Evolution not Following Darwin: Replacement of the Evolutionary Model), Moscow: Komkniga, 2005.

    Google Scholar 

  • Necsulea, A. and Kaessmann, H., Evolutionary dynamics of coding and non-coding transcriptomes, Nat. Rev. Genet., 2014, vol. 15, no. 11, pp. 734–748.

    Article  Google Scholar 

  • Nikolis, G. and Prigogine, I., Samoorganizatsiya v neravnovesnykh sistemakh (Self-organization in Nonequilibrium Systems), Moscow: Mir, 1979.

    Google Scholar 

  • Novitskaya, L.I., Morfologiya drevnikh beschelyustnykh (geterostraki i problema svyazi beschelyustnykh i chelyustnorotykh pozvonochnykh) (Morphology of Ancient Agnathans (Heterostracans and the Problem of Relationships of Agnathans and Gnathostome Vertebrates)), Moscow: Nauka, 1983.

    Google Scholar 

  • Novitskaya, L.I., Subclass Heterostraci, in Iskopaemye Rossii i sopredel’nykh stran (Fossils of Russia and Adjacent Countries), vol. Beschelyustnye i drevnie ryby (Agnathans and Ancient Fishes), Moscow: GEOS, 2004, pp. 69–207.

    Google Scholar 

  • Novitskaya, L.I., Predshestvenniki ryb, beschelyustnye- nachalo puti k cheloveku (Predecessors of Fishes, Agnathans—Beginning of the Pathway to the Man, Moscow: GEOS, 2015.

    Google Scholar 

  • O’Connor, J., Chiappe, L.M., and Bell, A., Pre-modern birds: Avian divergences in the Mesozoic, in Living Dinosaurus: The Evolutionary History of Modern Birds, Dyke, G. and Kaiser, G., Eds., Oxford: West Sussex: Wiley-Blackwell, J. Wiley and Sons, 2011, pp. 39–116.

    Chapter  Google Scholar 

  • Odum, E.P., Fundamentals of Ecology, 3rd ed., Philadelphia‒London‒Toronto: W.B. Saunders, 1971.

    Google Scholar 

  • Ohno, S., Evolution by Gene Duplication, New York‒Heidelberg‒Berlin: Springer-Verlag, 1970.

    Book  Google Scholar 

  • Ohno, S., Geneticheskie mekhanizmy progressivnoi evolyutsii (The Genetic Mechanisms of Progressive Evolution), Moscow: Mir, 1973.

    Google Scholar 

  • Organ, C.L., Shedlock, A.M., Meade, A., et al., Origin of avian genome size and structure in non-avian dinosaurs, Nature, 2007, vol. 446, pp. 180–184.

    Article  Google Scholar 

  • Organ, C.L. and Edwards, S.V., Major events in avian genome, in Living Dinosaurus: The Evolutionary History of Modern Birds, Dyke, G. and Kaiser, G., Eds., Oxford: West Sussex: Wiley-Blackwell, J. Wiley and Sons, 2011, pp. 325–337.

    Chapter  Google Scholar 

  • Osborn, H.F., The laws of adaptive radiation, Am. Natur., 1902, vol. 36, no. 425, pp. 353–363.

    Article  Google Scholar 

  • Osborn, H.F., The Age of Mammals in Europe, Asia, and North America, New York: MacMillan and Co., 1910.

    Google Scholar 

  • Osborn, H.F., The continuous origin of certain unit characters, as observed by a paleontologist, Am. Natur., 1912, vol. 46, no. 544, pp. 249–278.

    Article  Google Scholar 

  • Osborn, H.F., Origin of single characters as observed in fossil and living animals and plants, Am. Natur., 1915, vol. 49, no. 580, pp. 193–239.

    Article  Google Scholar 

  • Owen, R., Report on the archetype and homologies of the vertebrate skeleton, Rep. Brit. Assoc. Adv. Sci., 1846, pp. 169–340.

    Google Scholar 

  • Parker, J., Tsagkogeorga, G., Cotton, J.A., et al., Genomewide signature of convergent evolution in echolocating mammals, Nature, 2013, vol. 502, no. 7470, pp. 228–332.

    Article  Google Scholar 

  • Patthy, L., Genome evolution and the evolution of the exonshuffling—a review, Gene, 1999, vol. 238, pp. 103–114.

    Article  Google Scholar 

  • Peaston, A.E. and Whitelaw, E., Epigenetic and phenotypic variation in mammals, Mamm. Genome, 2006, vol. 17, no. 5, pp. 365–374.

    Article  Google Scholar 

  • Pennisi, E., Evolutionary biology: Evo-Devo enthusiasts get down to details, Science, 2002, vol. 298, no. 5595, pp. 953–955.

    Article  Google Scholar 

  • Pennisi, E., Evolutionary biology: Deciphering the genetics evolution, Science, 2008, vol. 321, pp. 760–763.

    Article  Google Scholar 

  • Philiptschenko, Yu.A., Evolyutsionnaya ideya v biologii (Evolutionary Idea in Biology), Moscow: Sabashnikovykh, 1923.

    Google Scholar 

  • Philiptschenko, J., Varibilitat und Variation, Berlin: Borntrager, 1927.

    Google Scholar 

  • Philiptschenko, Yu.A., Genetika. (Genetics), Moscow‒Leningrad: Gosizdat, 1929.

    Google Scholar 

  • Philiptschenko, Yu.A., Izmenchivost’ i metody ee izucheniya (Variability and Methods for Studying It) 5th ed., Moscow: Nauka, 1978.

    Google Scholar 

  • Pianka, E., Evolyutsionnaya ekologiya (Evolutionary Ecology), Moscow: Mir, 1981.

    Google Scholar 

  • Pigliucci, M. and Müller, G., Eds., Evolution: the Extended Synthesis, Cambridge, Mas.: MIT Press, 2010.

    Book  Google Scholar 

  • Pigliucci, M. and Preston, K., Phenotypic integration, in Studying of the Ecology and Evolution of Complex Phenotypes, New York: Oxford Univ. Press, 2004.

    Google Scholar 

  • Plate, L., Prinzipen der Systematik mit besonderet Beruckesichtigung des Systems der Tiere, Die Kultur Genenwart, 1912, vol. 4, no. 4, pp. 92–164.

    Google Scholar 

  • Ponomarenko, A.G., The main events in the evolution of the Biosphere, in Problemy doantropogenovoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 15–25.

    Google Scholar 

  • Ponomarenko, A.G., Data of paleontology on the origin of arthropods, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of Faunal Diversity), Moscow: KMK, 2005, pp. 146–155.

    Google Scholar 

  • Pontarotti, P., Ed., Evolutionary Biology—Concepts, Biodiversity, Macroevolution and Genome Evolution, Berlin‒Heidelberg: Springer-Verlag, 2011.

    Book  Google Scholar 

  • Povolotskaya, I.S. and Kondrashov, F.A., Sequence space and the ongoing expansion of the protein universe, Nature, 2010, vol. 465, pp. 922–926.

    Article  Google Scholar 

  • Price, P.W., Macroevolutionary Theory on Macroecological Pattern, Cambridge: Cambridge Univ. Press, 2003.

    Google Scholar 

  • Prigogine, I., Ot sushchestvuyushchego k voznikayushchemu: vremya i slozhnost' v fizicheskikh naukakh (From Existing to Arising: Time and Complexity in Physical Sciences), Moscow: Nauka, 1985.

    Google Scholar 

  • Prigogine, I. and Stengers, I., Oder out Chaos: Man’s New Dialogue with Nature, London: Bantam (Heinemann), 1984.

    Google Scholar 

  • Prigogine, I. and Stengers I., Poryadok iz khaosa: Novyi dialog cheloveka s prirodoi (Oder out of Chaos: New Dialogue of Man and Nature), Moscow: Progress, 1986.

    Google Scholar 

  • Putnam, N.H., Butts, T., Ferrier, D.E.K., et al., The Amphioxus genome and the evolution of the chordate karyotype, Nature, 2008, vol. 453, pp. 1064–1071.

    Article  Google Scholar 

  • Puzachenko, A.Yu., Technique of statistical analysis of data, in Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24‒8 tys. l. n.) (Evolution of Ecosystems of Europe at the Transition from the Pleistocene to Holocene, 24‒8 ka), Markova, A.K. and Kol’fskhoten, T., van, Eds., Moscow: KMK, 2008, pp. 48–69.

    Google Scholar 

  • Quennette, P.Y., Functions of behaviour in mammals, a review, Acta Oecol., 1990, vol. 2, no. 6, pp. 808–818.

    Google Scholar 

  • Raff, R.A. and Kaufman, T.C. Embryos, Genes, and Evolution: The Developmental-Genetic Basis of Evolutionary Change, New York: Macmillan, 1983.

    Google Scholar 

  • Rando, O.J. and Verstrepen, K.J., Timescales of genetic and epigenetic inheritance, Cell, 2007, vol. 128, no. 4, pp. 655–668.

    Article  Google Scholar 

  • Rasnitsyn, A.P., On irreducibility of macroevolutionary processes to a microevolution, in Filosofskie problemy evolyutsionnoi teorii (Philosophical Problems of the Evolutionary Theory), Moscow: Nauka, 1971, part 2, pp. 171–178.

    Google Scholar 

  • Rasnitsyn, A.P., Inadaptation and euadaptation, Paleontol. Zh., 1986, no. 1, pp. 3–7.

    Google Scholar 

  • Rasnitsyn, A.P., Rates of evolution and the evolutionary theory (hypothesis of the adaptive compromise), in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocoenotic Crises), Moscow: Nauka, 1987, pp. 46–64.

    Google Scholar 

  • Rasnitsyn, A.P., Protsess evolyutsii i metodologiya sistematiki, Tr. Russ. Entomol. Ob‒va, 2002, vol. 73, pp. 1–108.

    Google Scholar 

  • Rasnitsyn, A.P., The fossil record and cladogram, in Evolyutsiya biosfery i bioraznoobraziya: k 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity: To the 70th Anniversary of A.Yu. Rozanov), Moscow: KMK, 2006, pp. 39–48.

    Google Scholar 

  • Raup, D.M., Mass extinction: A commentary, Palaeontology, 1987, vol. 30, no. 1, pp. 1–13.

    Google Scholar 

  • Raup, D.M. and Sepkoski, J.J., Mass extinctions in the marine fossil record, Science, 1982, vol. 215, pp. 1501–1503.

    Article  Google Scholar 

  • Rautian, A.S., Paleontology as a source of information on the patterns and factors of evolution, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988a, vol. 2, pp. 76–118.

    Google Scholar 

  • Rautian, A.S., Glossary of terms and names, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988b, vol. 2, pp. 356–372.

    Google Scholar 

  • Rautian, A.S., Bunch of patterns of evolution, in Evolyutsiya biosfery i bioraznoobraziya: k 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity: To the 70th Anniversary of A.Yu. Rozanov), Moscow: KMK, 2006, pp. 20–38.

    Google Scholar 

  • Razumovsky, S.M., Zakonomernosti dinamiki biotsenozov (Patterns of the Dynamics of Ecosystems), Moscow: Nauka, 1981.

    Google Scholar 

  • Reich, D., Green, R.E., Kircher, M., et al., Genetic history of an archaic hominin group from Denisova Cave in Siberia, Nature, 2010, vol. 468, pp. 1053–1060.

    Article  Google Scholar 

  • Reif, W.-E., Junker, Th., and Hossfeld, U., The synthetic theory of evolution: General problems and the German contribution to the synthesis, Theor. Biosci., 2000, vol. 119, pp. 41–91.

    Article  Google Scholar 

  • Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian development, Nature, 2007, vol. 447, no. 7143, pp. 425–432.

    Article  Google Scholar 

  • Reimers, N.F., Ekologiya (teorii, zakony, pravila, printsipy i gipotezy) (Ecology: Theories, Patterns, Rules, Principles, and Hypotheses), Moscow: Ross. Molodaya, 1994.

    Google Scholar 

  • Rensch, B., Neuere Probleme der Abstammungslehre: Die Transspezifische Evolution, Stuttgart: Enke, 1947.

    Google Scholar 

  • Rensch, B., The laws of evolution, in Evolution of Life, Tax, S., Ed., Chicago: Univ. Chicago Press, 1960a, pp. 95–116.

    Google Scholar 

  • Rensch, B., Evolution above the Species Level, New York: Columbia Univ. Press, 1960b.

    Google Scholar 

  • Ricklefs, R.E., Evolutionary diversification and the origin of the diversity‒environment relationship, Ecology, 2006, vol. 87, pp. S3‒S13.

    Google Scholar 

  • Riggs, A.D., Martienssen, R.F., and Russo, V.E., Epigenetic Mechanisms of Gene Regulation, New York: Cold Spring Harbor Lab. Press, 1996.

    Google Scholar 

  • Rodin, S.N. and Rodin, A.S., Evolution by gene duplication: From the origin of the genetic code to the human genome, in Biosphere Origin and Evolution, Dobretsov, N., Kolchanov, N., Rozanov, A., and Zavarzin, G., Eds., Springer, 2008, pp. 257–276.

    Chapter  Google Scholar 

  • Roy, K. and Goldberg, E.E., Origination, extinction, and dispersal: Integrative models for understanding present-day diversity gradients, Am. Natur., 2007, vol. 170, pp. S71–S85.

    Google Scholar 

  • Rozanov, A.Yu., Nekotorye zakonomernosti evolyutsii arkheotsiat (Some Patterns of the Evolution of Archaeocyatha), Moscow: Nauka, 1973.

    Google Scholar 

  • Rozanov, A.Yu., Fossil bakteria, sedimentogenesis and the early stages of evolution of the Biosphere, Paleontol. Zh., 2003, no. 6, pp. 41–49.

    Google Scholar 

  • Rozanov, A.Yu., Life conditions on the early Earth after 4.0Ma, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Ross. Akad. Nauk, 2009, pp. 185–197.

    Google Scholar 

  • Rozanov, A.Yu., Problem of investigation of life on the early Earth, in Astrobiologiya: ot proiskhozhdeniya zhizni na Zemle k zhizni vo Vselennoi. Tezisy dokladov (Astrobiology: From the Origin of Life on the Earth to the Life in the Universe: Theses of Reports), Pushchino: Ross. Akad. Nauk, 2012, p. 32.

    Google Scholar 

  • Rozanov, A.Yu. and Fedonkin, M.A., Problem of the initial biotope of eukaryotes, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganizations and Evolution of the Biosphere), Moscow: Nedra, 1994, vol. 1, pp. 25–32.

    Google Scholar 

  • Rozhnov, S.V., Morphological patterns of the establishment and evolution of higher taxa of echinoderms, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of Faunal Diversity), Moscow: KMK, 2005, pp. 156–170.

    Google Scholar 

  • Rozhnov, S.V., Vavilov’s law of homologous series and archaic variety based on paleontological data, in Evolyutsiya biosfery i bioraznoobraziya: k 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity: To the 70th Anniversary of A.Yu. Rozanov), Moscow: KMK, 2006, pp. 134–151.

    Google Scholar 

  • Rozhnov, S.V., Role of heterochronies in the establishment of the body plans of higher taxa of echinoderms, Izv. Ross. Akad. Nauk Ser. Biol., 2009, no. 2, pp. 155–166.

    Google Scholar 

  • Rozhnov, S.V., Anteroposterior axis of echinoderms and the shift of the mouth in their historical and individual development, Izv. Ross. Akad. Nauk Ser. Biol., 2012, no. 2, pp. 203–212.

    Google Scholar 

  • Rozhnov, S.V., At the beginning of the aerobic biosphere: Influence of oxygen on the development of the biota in the Proterozoic and Early Paleozoic, in Problemy evolyutsii biosfery (Problems of Evolution of the Biosphere), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2013, pp. 95–118.

    Google Scholar 

  • Rutten, M., Proiskhozhdenie zhizni (estestvennym putem) (The Origin of Life by Natural Means), Moscow: Mir, 1973.

    Google Scholar 

  • Salichos, L. and Rokas, A., Inferring ancient divergences requires genes with strong phylogenetic signals, Nature, 2013, vol. 497, no. 7449, pp. 327–331.

    Article  Google Scholar 

  • Saunders, P.T. and Ho, M-W., On the increase in complexity in evolution, J. Theor. Biol., 1976, vol. 63, no. 2, pp. 375–384.

    Article  Google Scholar 

  • Saunders, P.T. and Ho, M.W., On the increase in complexity in evolution: 2. The reality of complexity and the principle of minimum increase, J. Theor. Biol., 1981, vol. 90, no. 4, pp. 515–530.

    Article  Google Scholar 

  • Saveliev, S.V., Sravnitel’naya anatomiya nervnoi sistemy pozvonochnykh (Comparative Anatomy of the Nervous System of Vertebrates), Moscow: Geotar-med, 2001.

    Google Scholar 

  • Saveliev, S.V., Principle of integrity in the evolution of the associative centers of brain in vertebrates, Izv. Ross. Akad. Nauk. Ser. Biol., 2010, no. 2, pp. 186–195.

    Google Scholar 

  • Scally, A., Dutheil, J.Y., Hillier, L.W., et al., Insights into hominid evolution from the gorilla genome sequence, Nature, 2012, vol. 483, pp. 169–175.

    Article  Google Scholar 

  • Schmalhausen, I.I., Integrating factors of evolution, Priroda (Moscow), 1938a, no. 6, pp. 36–47.

    Google Scholar 

  • Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism As a Whole in Individual and Historical Development), Moscow‒Leningrad: Akad. Nauk SSSR, 1938b.

    Google Scholar 

  • Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa (Pathways and Patterns of the Evolutionary Process), Moscow‒Leningrad: Akad. Nauk SSSR, 1940.

    Google Scholar 

  • Schmalhausen, I.I., Stabilizing selection and its place among the factors of evolution, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.

    Google Scholar 

  • Schmalhausen, I.I., Faktory evolyutsii. Teoriya stabiliziruyushchego otbora (Factors of Evolution: Theory of Stabilizing Selection), Moscow‒Leningrad: Akad. Nauk SSSR, 1946.

    Google Scholar 

  • Schmalhausen, I.I., Proiskhozhdenie nazemnykh pozvonochnykh (Origin of Terrestrial Vertebrates), Moscow: Nauka, 1964a.

    Google Scholar 

  • Schmalhausen, I.I., Regulyatsiya formoobrazovaniya v individual’nom razvitii (Regulation of Morphogenesis in Individual Development), Moscow: Akad. Nauk SSSR, 1964b.

    Google Scholar 

  • Schmalhausen, I.I., Kiberneticheskie voprosy biologii (Cybernetic Questions of Biology), Novosibirsk: Nauka, 1968.

    Google Scholar 

  • Schmalhausen, I.I., Problemy darvinizma (Problems of Darwinism), Leningrad: Nauka, 1969.

    Google Scholar 

  • Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii: Izbrannye trudy (Organism As a Whole in Individual and Historical Development: Selected Works), Moscow: Nauka, 1982.

    Google Scholar 

  • Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa: Izbrannye trudy, (Pathways and Patterns of the Evolutionary Process: Selected Works), Moscow: Nauka, 1983a.

    Google Scholar 

  • Schmalhausen, I.I., Sovremennye problemy evolyutsionnoi teorii, Izbrannye trudy (Modern Problems of the Evolutionary Theory: Selected Works), Moscow: Nauka, 1983b, pp. 277–351.

    Google Scholar 

  • Schmalhausen, I.I., Voprosy darvinizma (Question of Darwinism), Moscow: Nauka, 1990.

    Google Scholar 

  • Sepkoski, J.J., A factor analytic description of the Phanerozoic marine fossil record, Paleobiology, 1981, vol. 7, no. 1, pp. 36–53.

    Article  Google Scholar 

  • Serrelli, E. and Gontier, N., Eds., Macroevolution: Explanation, Interprtation and Evidence, Springer Intern. Publ., 2015.

    Book  Google Scholar 

  • Severtsov, A.N., Glavnye napravleniya evolyutsionnogo protsessa (Main Trends in the Evolutionary Process), Moscow: Dumnova, 1925.

    Google Scholar 

  • Severtsov, A.N., Modi of phylembryogenesis, Zool. Zh., 1935, vol. 14, no. 1, pp. 1–8.

    Google Scholar 

  • Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Moscow‒Leningrad: Akad. Nauk SSSR, 1939.

    Google Scholar 

  • Severtsov, A.N., Etudes on evolution: Individual development and evolution in Sobranie sochinenii, Moscow‒Leningrad: Akad. Nauk SSSR, 1945, vol. 3, pp. 19–216.

    Google Scholar 

  • Severtsov, A.N., Glavnye napravleniya evolyutsionnogo protsessa (Main Trends in the Evolutionary Process) 3rd ed., Moscow: Mosk. Gos. Univ., 1967.

    Google Scholar 

  • Severtsov, A.S., Establishment of the aromorphosis, Zh. Obshch. Biol., 1973, vol. 34, no. 1, pp. 21–35.

    Google Scholar 

  • Severtsov, A.S., Functional differentiation of the organism in the course of phylogeny, in Urovni organizatsii biologicheskikh system (Organizational Levels of the Biological Systems), Moscow: Nauka, 1980, pp. 41–48.

    Google Scholar 

  • Severtsov, A.S., Vvedenie v teoriyu evolyutsii (Introduction in the Theory of Evolution), Moscow: Mosk. Gos. Univ., 1981a.

    Google Scholar 

  • Severtsov, A.S., Selection for expansion of the norm of reaction, Zh. Obshch. Biol., 1981b, vol. 42, no. 3, pp. 351–361.

    Google Scholar 

  • Severtsov, A.S., Specialization as a basis for the origin of taxa of the superspecies rank, Zh. Obshch. Biol., 1984, vol. 45, no. 5, pp. 586–595.

    Google Scholar 

  • Severtsov, A.S., Criteria and conditions for the appearance of aromorphic organization, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocoenotic Crises), Moscow: Nauka, 1987, pp. 64–76.

    Google Scholar 

  • Severtsov, A.S., Napravlennost’ evolyutsii (Directionality of Evolution), Moscow: Mosk. Gos. Univ., 1990.

    Google Scholar 

  • Severtsov, A.S., Mechanisms of the appearance and ecological significance of the fundamental niche of a species, Ekologiya, 2004, no. 6, pp. 403–409.

    Google Scholar 

  • Severtsov, A.S., Teoriya evolyutsii (Theory of Evolution), Moscow: Vlados, 2005.

    Google Scholar 

  • Severtsov, A.S., Evolyutsionnaya ekologiya pozvonochnykh zhivotnykh (Evolutionary Ecology of Vertebrates), Moscow: KMK, 2013.

    Google Scholar 

  • Severtsov, S.A., Problemy ekologii zhivotnykh (Problems of the Ecology of Animals), Moscow‒Leningrad: Akad. Nauk SSSR, 1951.

    Google Scholar 

  • Shackleton, N.J., New data on the evolution of Pliocene climatic variability, in Paleoclimate and Evolution, with Emphasis on Human Origin, New Haven: Yale Univ. Press, 1995, pp. 242–248.

    Google Scholar 

  • Shackleton, N.J., The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity, Science, 2000, vol. 289, pp. 1897–1902.

    Article  Google Scholar 

  • Shapiro, B.J., Friedman, J., Cordero, O.X., et al., Population genomics of early events in the ecological differentiation of bacteria, Science, 2012, vol. 336, pp. 48–51.

    Article  Google Scholar 

  • Shcherbakov, V.P., Evolution as resistance of entropy, Zh. Obshch. Biol., 2005, vol. 66, no. 3, pp. 195–211.

    Google Scholar 

  • Shedlock, A.M., Botka, C.W., Zhao, S., et al., Phylogenomics of non-avian reptiles and the structure of the ancestral amniote genome, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, pp. 2767–2772.

    Article  Google Scholar 

  • Shedlock, A.M. and Edwards, S.V., Amniotes (amniota), in The Timetree of Life, Hedges, S.B. and Kumar, S., Eds., New York: Oxford Univ. Press, 2009, pp. 373–380.

    Google Scholar 

  • Shendure, J. and Akey, J.M., The origins, determinations, and consequences of human mutations, Science, 2015, vol. 349, pp. 1478–1483.

    Article  Google Scholar 

  • Shishkin, M.A., Irreversibility of evolution and factors of morphogenesis, Paleontol. Zh., 1968, no. 3, pp. 3–11.

    Google Scholar 

  • Shishkin, M.A., Morfologiya drevnikh zemnovodnykh i problema evolyutsii nizshikh tetrapod (Morphology of Ancient Amphibians and the Problem of Evolution of Lower Tetrapods), Moscow: Nauka, 1973.

    Google Scholar 

  • Shishkin, M.A., Individual development and natural selection, Ontogenez, 1984, vol. 15, no. 2, pp. 115–136.

    Google Scholar 

  • Shishkin, M.A., Evolution as an epigenetic process, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988a, vol. 2, pp. 142–169.

    Google Scholar 

  • Shishkin, M.A., Patterns of the evolution of ontogeny, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988b, vol. 2, pp. 169–209.

    Google Scholar 

  • Shishkin, M.A., Individual development and lessons of evolutionism, Paleontol. Zh., 2006, no. 3, pp. 179–198.

    Google Scholar 

  • Shishkin, M.A., Evolutionary theory and scientific thinking, Paleontol. Zh., 2010, no. 6, pp. 3–17.

    Google Scholar 

  • Shishkin, M.A., System foundations of morphogenesis and their manifestation in the fossil record, Paleontol. Zh., 2012, no. 4, pp. 3–15.

    Google Scholar 

  • Shnol, S.E., Fiziko-khimicheskie faktory biologicheskoi evolyutsii (Physicochemical Factors of Biological Evolution), Moscow: Nauka, 1979.

    Google Scholar 

  • Shnol, S.E., The past, present, and future, in Sovremennaya biotekhnologiya (Modern Biotechnology), Moscow: Taideks Ko, 2004, pp. 5–12.

    Google Scholar 

  • Shnol, S.E., Necessary and sufficient principles and factors for the origin of life and biological evolution from molecules to man, in Astrobiologiya: ot proiskhozhdeniya zhizni na Zemle k zhizni vo Vselennoi. Tezisy dokladov (Astrobiology: From the Origin of Life on the Earth to the Life in the Universe: Theses of Reports), Pushchino: Ross. Akad. Nauk, 2012, p. 44.

    Google Scholar 

  • Shredinger, E., Chto takoe zhizn’ s tochki zreniya fizika (What is Life from the Point of View of Physics), Moscow: Atomizdat, 1972.

    Google Scholar 

  • Shvarts, S.S., Evolution of the biosphere and ecological prediction, Vestn. Akad. Nauk SSSR, 1976, no. 2, pp. 61–72.

    Google Scholar 

  • Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Patterns of Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  • Siegal, M.L. and Bergman, A., Waddington’s canalization revised: Developmental stability and evolution, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no. 16, pp. 10528–10532.

    Article  Google Scholar 

  • Simons, A.M., The continuity of microevolution and macroevolution, J. Evol. Biol., 2002, vol. 15, pp. 688–701.

    Article  Google Scholar 

  • Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  • Simpson, G.G., The principles of classification and a classification of mammals, Bull. Am. Mus. Natur. Hist., 1945, vol. 85, pp. 1–350.

    Google Scholar 

  • Simpson, G.G., The Meaning of Evolution, New York: Mentor Books, 1949.

    Google Scholar 

  • Simpson, G.G., The Major Features of Evolution, New York: Columbia Univ. Press, 1953.

    Google Scholar 

  • Simpson, G.G., Mesozoic mammals and the polyphyletic origin of mammals, Evolution, 1959, vol. 13, pp. 405–414.

    Article  Google Scholar 

  • Sokolov, B.S., Ecosystem reorganization and evolution of the Biosphere, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganization and Evolution of the Biosphere), Moscow: Nedra, 1994, pp. 8–13.

    Google Scholar 

  • Sokolov, B.S., Ocherki stanovleniya venda (Sketches on the Establishment of the Vendian), Moscow: KMK, 1997.

    Google Scholar 

  • Sokolov, B.S., Biosphere as a Biogemerida and its biotype, Biosfera, 2009, no. 1, pp. 1–5.

    Google Scholar 

  • Sokolov, B.S., The chronostratigraphic space of the lithosphere and the Vendian as geohistorical subdivision of the Neoproterozoic, Geol. Geophis., 2011, vol. 52, no. 10, pp. 1334–1348.

    Google Scholar 

  • Spencer, H., The Principles of Biology, London‒Edinburg: Williams and Norgate, 1864, vol. 1.

    Google Scholar 

  • Spencer, H., Osnovaniya biologii (Fundamentals of Biology), St. Petersburg: Izdatel’, 1899, vol. 1.

    Google Scholar 

  • Stanhope, M.J., Lupas, A., Italia, M.J., et al., Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates, Nature, 2001, vol. 411, no. 6840, pp. 940–944.

    Article  Google Scholar 

  • Stanley, S.M., A theory of evolution above the species level, Proc. Nat. Acad. Sci. USA, 1975, vol. 73, pp. 646–650.

    Article  Google Scholar 

  • Stanley, S.M., Macroevolution: Pattern and Process, San Francisco: W.H. Freeman, 1979.

    Google Scholar 

  • Steinberg, B. and Ostermeier, M., Environment changes bridge evolutionary valley, Sci. Adv., 2016, no. 2, e1500921, pp. 1–9.

    Google Scholar 

  • Stenseth, N.C. and Maynard, S.J., Coevolution in ecosystems: Red Queen evolution or stasis?, Evolution, 1984, vol. 38, pp. 870–880.

    Article  Google Scholar 

  • Steel, E., Lindley, R.A., and Blanden, R.V., Chto esli Lamark prav? Immunogenetika i evolyutsiya (What If Lamarck Was Right), Moscow: Mir, 2002.

    Google Scholar 

  • Sudmant, P.H., Rausch, T., Gardner, E.J., et al., An integrated map of structural variation in 2, 504 human genomes, Nature, 2015, vol. 526, no. 7571, pp. 75–81.

    Article  Google Scholar 

  • Suess, E., Die Entstehung der Alpen, Wien: W. Braumiiller, 1875.

    Google Scholar 

  • Sukachev, V.N., Idea of the development in phytocoenology, Sovrem. Botan., 1942, nos. 1‒3, pp. 5–17.

    Google Scholar 

  • Sukachev, V.N., Foundation of the theory of biogeocoenology, in Yubileinyi sbornik AN SSSR (Jubilee Collected Works of the Academy of Sciences of the USSR), Moscow‒Leningrad: Nauka, 1947, pp. 283–304.

    Google Scholar 

  • Sukachev, V.N., Biogeocoenosis as manifestation of interaction of wildlife and abiocoen lifeless nature on the surface of the Earth: Relation of the concepts “biogeocoenosis,” “ecosystem,” “geographical landscape,” and “facies”, in Osnovy lesnoi biogeotsenologii (Fundamentals of the Forest Biogeocoenology), Moscow: Nauka, 1964, pp. 5–49.

    Google Scholar 

  • Svirizhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.

    Google Scholar 

  • Szarski, H., The importance of deviation amplifying circuites for the understanding of the course of evolution, Acta Biotheor., 1971, vol. 20, nos. 3‒4, pp. 158–170.

    Article  Google Scholar 

  • Takhtajan, A.L., On evolutionary heterochrony of characters, Rep. Akad. Nauk Arm. SSR., 1946, vol. 5, no. 3, pp. 79–86.

    Google Scholar 

  • Takhtajan, A.L., Pathways of adaptive evolution of plants, Bot. Zh., 1951, vol. 36, no. 3, pp. 231–239.

    Google Scholar 

  • Takhtajan, A.L., Evolution in terms of cybernetics and the general theory of games, in Tezisy dokladov II Soveshchaniya po primeneniyu matematicheskikh metodov v biologii (II Meetings on Application of Mathematical Methods in Biology), Leningrad: Leningr. Gos. Univ., 1959, pp. 45–49.

    Google Scholar 

  • Takhtajan, A.L., Tectology: History and problems, Sistemnye issledovaniya (System Studies), Moscow: Nauka, 1971, pp. 200–277.

    Google Scholar 

  • Takhtajan, A.L., Macroevolutionary processes in the history of the plant world, Bot. Zh., 1983, vol. 68, no. 12, pp. 1593–1603.

    Google Scholar 

  • Takhtajan, A.L., On the way to the universal evolutionary science, in Grani evolyutsii. Stat’i po teorii evolyutsii 1943‒2006 (Aspects of Evolution: Works on the Theory of Evolution 1943‒2006), St. Petersburg: Nauka, 2007, pp. 245–246.

    Google Scholar 

  • Talent, J.A., Earth and Life. Global Biodiversity, Extinction Intervals and Bigeographic Perturbations through Time, Dordrecht‒Heidelberg‒London‒New York: Springer, 2002.

    Google Scholar 

  • Tansley, A.G., The use and abuse of vegetational terms and concepts, Ecology, 1935, vol. 16, no. 3, pp. 284–307.

    Article  Google Scholar 

  • Tatarinov, L.P., Morfologicheskaya evolyutsiya teriodontov i obshchie voprosy evolyutsii (Morphological Evolution of Theriodonts and the General Questions of Evolution), Moscow: Nauka, 1976.

    Google Scholar 

  • Tatarinov, L.P., Ocherki po teorii evolyutsii (Sketches on the Theory of Evolution), Moscow: Nauka, 1987.

    Google Scholar 

  • Tatarinov, L.P., Phylogenetic studies, classical Darwinism, cladistic analysis, molecular genetics, Paleontol. Zh., 2002, no. 3, pp. 3–12.

    Google Scholar 

  • Tatarinov, L.P., Molecular genetics and epigenetics in the mechanisms of morphogenesis, Zh. Obshch. Biol., 2007, vol. 68, no. 3, pp. 165–169.

    Google Scholar 

  • Teilhard de Chardin, P., Le Phénomène humain, Paris: Ed. du Seuil, 1955.

    Google Scholar 

  • Tenaillon, O., Rodrίgues-Verdugo, A., Gaut, R.L., et al., The molecular diversity of adaptive convergence, Science, 2012, vol. 335, pp. 457–461.

    Article  Google Scholar 

  • Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (Brief Sketch on the Theory of Evolution), Moscow: Nauka, 1969.

    Google Scholar 

  • Trofimuk, A.A., Molchanov, V.I., and Paraev, V.V., Biogenic oxygen of the atmosphere—equivalent of the hydrocarbonic shell in interaction of external geospheres, Vest. OGGGN Ross. Akad. Nauk, 2000, vol. 13, no. 3.

    Google Scholar 

  • True, J.R. and Carroll, S.B., Gene co-option in physiological and morphological evolution, Ann. Rev. Cell Dev. Biol., 2002, vol. 18, pp. 53–80.

    Article  Google Scholar 

  • Vaidya, N., Manapat, M.L., Chen, I.A., et al., Spontaneous net work formation among cooperative RNA replicators, Nature, 2012, vol. 491, pp. 72–77.

    Article  Google Scholar 

  • Van Heteren, A.H., The hominins of Flores: Insular adaptations of the lower body, Compt. R. Palevol., 2012, vol. 11, pp. 169–179.

    Article  Google Scholar 

  • Van Valen, L., A new evolutionary law, Evol. Theory, 1973, vol. 1, p. 130.

    Google Scholar 

  • Van Valen, L., Catastrophes, expectations and the evidence, Paleobiology, 1984, vol. 10, no. 1, pp. 121–137.

    Article  Google Scholar 

  • Vangengeim, E.A., Paleontologicheskoe obosnovanie stratigrafii antropogena Severnoi Evrazii (Paleontological Substantiation of the Stratigraphy of the Anthropogene in Northern Eurasia), Moscow: Nauka, 1977.

    Google Scholar 

  • Vasil’ev, A.G., Rapid epigenetic reorganizations as one of probable mechanisms of the global biocoenotic crisis, Biosfera, 2009, vol. 1, no. 2, pp. 166–177.

    Google Scholar 

  • Vassoler, F.M. and Sadri-Vakili, G., Mechanisms of transgenerational inheritance of addictive-like behaviors, Neuroscience, 2014, vol. 264, pp. 198–206.

    Article  Google Scholar 

  • Vavilov, N.I., Law of homologous series in hereditary variation, in Trudy Vserossiiskogo s”ezda po selektsii i semenovodstvu (Proceedings of the Congress on Selection and Seedage), Saratov, Gubpoligrafotdel, 1920, pp. 41–56.

    Google Scholar 

  • Vavilov, N.I., Law of homologous series in hereditary variation, in Teoreticheskie osnovy selektsii rastenii (Theoretical Foundations of Artificial Selection of Plants), Moscow‒Leningrad: Sel’khozgiz, 1935, vol. 1, pp. 75–128.

    Google Scholar 

  • Vernadsky, V.I., On the reproduction of organisms and its significance in the mechanism of the biosphere, Izv. Akad. Nauk SSSR, Ser. 6, 1926a, vol. 20, no. 9, pp. 697–726.

    Google Scholar 

  • Vernadsky, V.I., Biosfera (Biosphere), Leningrad: Nauchn. Khim.-tekhn. Izd., 1926b.

    Google Scholar 

  • Vernadsky, V.I., Problemy biogeokhimii (Problems of Biogeochemistry), vol. 2: O korennom material’no-energeticheskom otlichii zhivykh i kosnykh estestvennykh tel biosfery (On the Radical Material‒Energetic Difference of Living and Inert Natural Bodies of the Biosphere), Leningrad: Akad. Nauk SSSR, 1939.

    Google Scholar 

  • Vernadsky, V.I., Beginnings and eternity of life, in Izbrannye sochineniya (Selected Works), Moscow: Akad. Nauk SSSR, 1960, vol. 5, pp. 120–137.

    Google Scholar 

  • Vernadsky, V.I., Khimicheskoe stroenie biosfery Zemli i ee okruzhenie (Chemical Structure of the Biosphere of the Earth and Its Environs), Moscow: Nauka, 1965.

    Google Scholar 

  • Vernadsky, V.I., Biosfera (Biosphere), Moscow: Mysl’, 1967.

    Google Scholar 

  • Vernadsky, V.I., Zhivoe veshchestvo (Living Substance), Moscow: Nauka, 1978.

    Google Scholar 

  • Vernadsky, V.I., Biosfera i noosfera (Biosphere and Noosphere), Moscow: Nauka, 1989.

    Google Scholar 

  • Vernadsky, V.I., Nauchnaya mysl’ kak planetnoe yavlenie (Scientific Thinking as a Planetary Phenomenon), Moscow: Nauka, 1991.

    Google Scholar 

  • Vislobokova, I.A., On the main features of historical development and classification of Ruminantia, Paleontol. Zh., 1990a, no. 4, pp. 3–14.

    Google Scholar 

  • Vislobokova, I.A., Iskopaemye oleni Evrazii (Extinct Deer of Eurasia), Moscow: Nauka, 1990b.

    Google Scholar 

  • Vislobokova, I.A., On the age of the Shand-Gol fauna of Mongolia and evolution of the mammal fauna of Central Asia in the Oligocene, Stratigr. Geol. Korrelyatsiya., 1996a, vol. 4, no. 2, pp. 55–64.

    Google Scholar 

  • Vislobokova, I.A., The Pliocene Podpusk‒Lebyazh’e mammalian faunas, Western Siberia, Palaeontogr. Ital., 1996b, vol. 83, pp. 1–23.

    Google Scholar 

  • Vislobokova, I.A., A new representative of the Hypertraguloidea (Tragulina, Ruminantia) from the Khoer-Dzan locality in Mongolia, with remarks on the relationships of the Hypertragulidae, Am. Mus. Novit., 1998, no. 3225, pp. 1–24.

    Google Scholar 

  • Vislobokova, I.A., Evolution and classification of Tragulina (Ruminantia, Artiodactyla), Paleontol. J., 2001, vol. 35, suppl. no. 2, pp. 69–145.

    Google Scholar 

  • Vislobokova, I.A., Historical development of even-toed ungulates (Artiodactyla) of northern Eurasia and the evolutionary stages of their communities in the Cenozoic, Evolyutsiya biosfery i bioraznoobraziya (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 416–438.

    Google Scholar 

  • Vislobokova, I.A., The major stages in the evolution of artiodactyl communities from the Pliocene‒Early Pleistocene of northern Eurasia: Part 1, Paleontol. Zh., 2008a, no. 3, pp. 76–91.

    Google Scholar 

  • Vislobokova, I.A., Main stages in evolution of Artiodactyla Communities from the Pliocene‒early Middle Pleistocene of northern Eurasia: Part 2, Paleontol. Zh., 2008b, no. 4, pp. 79–89.

    Google Scholar 

  • Vislobokova, I.A., The earliest member of Entelodontoidea (Artiodactyla, Suiformes) from the Middle Eocene of the Khaychin-Ula II locality, Mongolia, and some patterns of evolution of this superfamily, Paleontol. Zh., 2008c, no. 6, pp. 69–80.

    Google Scholar 

  • Vislobokova, I.A., Istoriya bol’sherogikh olenei (History of Megacerines), Moscow: GEOS, 2012a.

    Google Scholar 

  • Vislobokova, I.A., Giant deer: Origin, evolution, role in the Biosphere, Paleontol. J., 2012b, vol. 46, no. 7, pp. 643–775.

    Article  Google Scholar 

  • Vislobokova, I.A., On the origin of Cetartiodactyla: Comparison of the data on evolutionary morphology and molecular biology, Paleontol. Zh., 2013a, no. 3, pp. 83–97.

    Google Scholar 

  • Vislobokova, I.A., Ecological evolution of early Cetartiodactyla and reconstruction of its absent blank link, Paleontol. Zh., 2013b, no. 5, pp. 72–88.

    Google Scholar 

  • Vislobokova, I.A., Morphology, taxonomy, and phylogeny of megacerines (Megacerini, Cervidae, Artiodactyla), Paleontol. J., 2013c vol. 47, no. 8, pp. 833–950.

    Article  Google Scholar 

  • Vislobokova, I.A., Evolyutsiya biosfery i makroevolyutsiya (Evolution of the Biosphere and Macroevolution), Moscow: GEOS, 2014.

    Google Scholar 

  • Vislobokova, I. and Daxner-Höck, G., Oligocene‒Early Miocene ruminants from the Valley of Lakes (central Mongolia), Ann. Naturhist. Mus. Wien, 2002, vol. 103A, pp. 213–235.

    Google Scholar 

  • Vislobokova, I., Sotnikova, M., and Dodonov, A., Bioevents and diversity of the Late Miocene‒Pliocene mammal faunas of Russia and adjacent areas, Deinsea, 2003, vol. 10 (Distribution and Migration of Tertiary Mammals in Eurasia, a Volume in Honour of Hans de Bruijn), pp. 563–574.

    Google Scholar 

  • Vislobokova, I. and Tesakov, A., Early and Middle Pleistocene of northern Eurasia, in Encyclopedia of Quaternary Sciences, Amsterdam: Elsevier, 2013, vol. 4, pp. 605–614.

    Google Scholar 

  • Vislobokova, I.A. and Trofimov, B.A., Archaeomeryx (Archaeomerycidae, Ruminantia): Morphology, ecology and role in the evolution of the Artiodactyla, Paleontol. J., 2002, vol. 36, no. 5, pp. 429–523.

    Google Scholar 

  • Vol’kenshtein, M.V., Molekuly i zhizn’. Vvedenie v molekulyarnuyu biofiziku (Molecules and Life: Introduction in Molecular Biophysics), Moscow: Nauka, 1965.

    Google Scholar 

  • Vol’kenshtein, M.V., Obshchaya biofizika (General Biophysics), Moscow: Nauka, 1978.

    Google Scholar 

  • Volterra, V., Leçons sur la Theorie Mathématique de la Lutte pour la Vie par Vito Valterra, Paris: Gauthier, 1931.

    Google Scholar 

  • Vorobyeva, E.I., Morfologiya i osobennosti evolyutsii kisteperykh ryb (Morphology and Evolutionary Features of Crossopterygians), Moscow: Nauka, 1977.

    Google Scholar 

  • Vorobyeva, E.I., Vavilov’s law of homologous series and dynamic stability, Zh. Obshch. Biol., 1987, vol. 48, no. 4, pp. 444–460.

    Google Scholar 

  • Vorobyeva, E.I., Problema proiskhozhdeniya nazemnykh pozvonochnykh (Problem of the Origin of Terrestrial Vertebrates), Moscow: Nauka, 1992.

    Google Scholar 

  • Vorobyeva, E.I., A new approach to the problem of the origin of tetrapods, Paleontol. Zh., 2003, no. 5, pp. 3–14.

    Google Scholar 

  • Vorobyeva, E.I., Phylogenetic principles and criteria for the model of Sarcopterygii, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of Faunal Diversity), Moscow: KMK, 2005, pp. 44–59.

    Google Scholar 

  • Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.

    Google Scholar 

  • Vrba, E.S., Macroevolutionary trends: New perspectives on the roles of adaptation and incidental effect, Science, 1983, vol. 221, pp. 387–389.

    Article  Google Scholar 

  • Vrba, E.S., Ecology in relation to speciation rates: Some case histories of Miocene‒Recent mammal clades, Evol. Ecol., 1987, vol. 1, pp. 283–300.

    Article  Google Scholar 

  • Vrba, E.S., Mammals as a key to evolutionary theory, J. Mammal., 1992, vol. 73, pp. 1–28.

    Article  Google Scholar 

  • Vrba, E.S., Turnover pulses, the Red Queen, and related topics, Am. J. Sci., 1993, vol. 293, pp. 418–452.

    Article  Google Scholar 

  • Vrba, E.S. and Eldredge, N., Individuals, hierarchies and processes: Towards a more complete evolutionary theory, Paleobiology, 1984, vol. 10, pp. 146–171.

    Article  Google Scholar 

  • de Vries, H., Die Mutations Theorie. Vershuche und Beobachtungen über die Entstehung der Arten im Pflanzenreich, Leipzig, 1901, vol. 1; 1903, vol. 2.

    Google Scholar 

  • Waddington, C.H., The genetic assimilation of the bithorax phenotype, Evolution. 1956, vol. 10, pp. 1–13.

    Article  Google Scholar 

  • Waddington, C.H., The epigenotype, Endeavour, 1942a, no. 1, pp. 18–20.

    Google Scholar 

  • Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942b, vol. 150, no. 1247, pp. 563–565.

    Article  Google Scholar 

  • Waddington, C.H., Epigenetics and evolution, Symp. Soc. Exp. Biol., 1953a, vol. 7, pp. 186–199.

    Google Scholar 

  • Waddington, C.H., Genetic assimilation of acquired characters, Evolution, 1953b, vol. 7, pp. 118–126.

    Article  Google Scholar 

  • Waddington, C.H., The genetic assimilation of the bithorax phenotype, Evolution, 1956, vol. 10, pp. 1–13.

    Article  Google Scholar 

  • Waddington, C.H., The Strategy of the Genes, London: Allen and Unwin, 1957.

    Google Scholar 

  • Waddington, C.H., Canalization of development and genetic assimilation of acquired characters, Nature, 1959, vol. 183, no. 4676, pp. 1654–1655.

    Article  Google Scholar 

  • Waddington, C.H., The Nature of Life, London: Allen and Unwin, 1961.

    Google Scholar 

  • Waddington, C.H., Morfogenez i genetika (Morphogenesis and Genetics), Moscow: Mir, 1964.

    Google Scholar 

  • Waddington, C.H., Whether evolution depends on casual search, in Na puti k teoreticheskoi biologii. I. Prolegomeny (On the Way to the Theoretical Biology: 1. Prolegomena), Moscow: Mir, 1970, pp. 108–115.

    Google Scholar 

  • Wagner, G.P., Feedback selection and evolution of modifiers, Acta Biotheor., 1981, vol. 30, no. 2, pp. 79–102.

    Article  Google Scholar 

  • Wake, D.W., On the problem of stasis in organismal evolution, J. Theor. Biol., 1983, vol. 101, pp. 211–224.

    Article  Google Scholar 

  • Wallace, A.R., The Geographical Distribution of Animals, London: MacMillan, 1876.

    Google Scholar 

  • Wallace, A.R., Darwinism, London: MacMillan, 1889.

    Google Scholar 

  • Wallace, A.R., Man’s Place in the Universe, New York: McClure, Phillips and Co, 1903.

    Google Scholar 

  • Wallace, A.R., Social Environment and Moral Progress, London‒New York‒Toronto‒Melbourne: Cassel and Co., 1913.

    Book  Google Scholar 

  • Waterman, T.H., Bradley, D.F., and Mesarović, M., Teoriya sistem i biologiya (Theory of Systems and Biology), Moscow: Mir, 1971.

    Google Scholar 

  • Watson, D.M.S., Paleontology and Modern Biology, New Haven: Yale Univ. Press, 1951.

    Google Scholar 

  • Webb, C.T., Hoeting, J.A., Ames, G.M., et al., A structured and dynamic framework to advance traits-based theory and prediction in ecology, Ecol. Lett., 2010, vol. 13, pp. 267–283.

    Article  Google Scholar 

  • Webb, S.D. and Opdyke, N.D., Global climatic influence on Cenozoic land mammals fauna, in Effects of Past Global Change on Life, Washington, DC: Nat. Acad. Sci., 1995, pp. 184–208.

    Google Scholar 

  • Welch, J. and Waxman, D., Modularity and cost of complexity, Evolution, 2003, vol. 57, pp. 1723–1734.

    Article  Google Scholar 

  • Wesstoll, T.S., A crucial stage in vertebrate evolution: Fish to land animals, Proc. Roy. Inst. Great Brit., 1961, vol. 38, no. 175, pp. 600–618.

    Google Scholar 

  • West-Eberhard, M.J., Developmental Plasticity and Evolution, New York: Oxford Univ. Press, 2003.

    Google Scholar 

  • Whittaker, R., Soobshchestva i ekosistemy (Communities and Ecosystems), Moscow: Progress, 1980.

    Google Scholar 

  • Wiley, E.O., Phylogenetics: The Theory and Practice of Phylogenetic Systematics, New York: J. Wiley and Sons, 1981.

    Google Scholar 

  • Wilson, A.S., Gene regulation in evolution, in Molecular Evolution, Sunderland: Sinauer Assoc., 1976, pp. 225–234.

    Google Scholar 

  • Woese, C., The universal ancestor, Proc. Nat. Acad. Sci. USA, 1998, no. 12, pp. 6854–6889.

    Article  Google Scholar 

  • Wood, A.J. and Oakey, R.J., Genomic imprinting in mammals: emerging themes and established theories, PloS Genet., 2006, vol. 2, no. 11, pp. 1677–1685.

    Article  Google Scholar 

  • Woodburne, M. and Swisher, C.C., Land mammal highresolution geochronology, intercontinental overland dispersals, sea level, climate, and vicariance, geochronology, time scales and global stratigraphic correlations, Soc. Sed. Geol. Spec. Publ., 1995, no. 54, pp. 335–363.

    Google Scholar 

  • Wright, S., The role of mutation, inbreeding, crossbreeding, and selection in evolution, in Proceedings of the Sixth International Congress of Genetics, Ithaca‒New York, 1932, vol. 1, pp. 356–366.

    Google Scholar 

  • Wright, S., Statistical genetics and evolution, Bull. Am. Math. Soc., 1942, vol. 48, no. 4, pp. 223–246.

    Article  Google Scholar 

  • Wright, S., Evolution and Genetics of Population, Chicago: Univ. Chicago Press, 1978.

    Google Scholar 

  • Xue, Y., Prado-Martinez, J., Sudmant, P.H., et al., Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding, Science, 2015, vol. 348, no. 6231, pp. 242–245.

    Article  Google Scholar 

  • Yablokov, A.V. and Yusufov, A.G., Evolyutsionnoe uchenie (Evolutionary Doctrine), Moscow: Vyssh. Shkola, 2006.

    Google Scholar 

  • Yonezawa, T. and Hasegawa, M., Was the universal common ancestry proved?, Nature, 2010, vol. 468, no. 7326, pp. 219–222.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., et al., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, vol. 292, pp. 686–693.

    Article  Google Scholar 

  • Zakiyan, S.M., Vlasov, V.V., and Dement’eva, E.V., Epigenetika (Epigenetics), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012.

    Google Scholar 

  • Zang, J., Zang, Y.P., and Rosenberg, H.F., Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leafeating monkey, Nat. Genet., 2002, vol. 30, pp. 411–415.

    Article  Google Scholar 

  • Zavadsky, K.M., On the gaining an understanding of the progress in organic nature, in Problema razvitiya v prirode i obshchestve (Problem of the Development in the Nature and Society), Moscow‒Leningrad: Akad. Nauk SSSR, 1958, pp. 79–120.

    Google Scholar 

  • Zavadsky, K.M., The major forms of organization of living things and their division, in Filosofskie problemy sovremennoi biologii (Philosophical Problems of Modern Biology), Moscow‒Leningrad: Nauka, 1966, pp. 29–47.

    Google Scholar 

  • Zavadsky, K.M., Problem of the progress of wildlife, Vopr. Filos., 1967, no. 9, pp. 124–136.

    Google Scholar 

  • Zavadsky, K.M., Vid i vidoobrazovanie (Species and Speciation), Leningrad: Nauka, 1968.

    Google Scholar 

  • Zavadsky, K.M., Razvitie evolyutsionnoi teorii posle Darvina (1850‒1920-e gg.) (Development of the Evolutionary Theory after Darwin (1850‒1920), Leningrad: Nauka, 1973.

    Google Scholar 

  • Zavadsky, K.M. and Kolchinsky, E.I., Evolyutsiya evolyutsii (Evolution of Evolution), Leningrad: Nauka, 1977.

    Google Scholar 

  • Zavarzin, G.A., Bakterii i sostav atmosfery (Bacteria and the Composition of Atmosphere), Moscow: Nauka, 1984.

    Google Scholar 

  • Zavarzin, G.A., Formation of the Biosphere, Vestn. Ross. Akad. Nauk, 2001, vol. 71, no. 11, pp. 988–1001.

    Google Scholar 

  • Zavarzin, G.A., Formation of the system of biogeochemical cycles, Paleontol. Zh., 2003, no. 6, pp. 16–24.

    Google Scholar 

  • Zavarzin, G.A., The first ecosystems on the Earth, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Ross. Akad. Nauk, 2009, pp. 230–244.

    Google Scholar 

  • Zavarzin, G.A., Evolyutsiya prokariotnoi biosfery “Mikroby v krugovorote zhizni” (Evolution of Prokaryotic Biosphere “Microorganisms in the Circulation of Life”), Moscow: Maks Press, 2011a.

    Google Scholar 

  • Zavarzin, G.A., Kakosfera. Filosofiya i publitsistika (Kakosphere: Philosophy and Publicism), Moscow: Ruthenica, 2011b.

    Google Scholar 

  • Zelenkov, N.V., Stable morphological types and mosaicism in macroevolution of birds, Zh. Obshch. Biol., 2015a, vol. 76, no. 4, pp. 266–279.

    Google Scholar 

  • Zelenkov, N.V., Methods of phylogenetics and evolutionary biology: Achievements and restrictions, in Doklady XIV ornitologicheskoi konferents Severnoi Evrazii (Reports of the XIV Ornithological Conference of Northern Eurasia), 2015b, pp. 138–164.

    Google Scholar 

  • Zherikhin, V.V., Razvitie i smena melovykh i kainozoiskikh faunisticheskikh kompleksov (trakheinye i khelitserovye) (Development and Replacement of Cretaceous and Cenozoic Faunal Assemblages: Tracheates and Chelicerate), Moscow: Nauka, 1978.

    Google Scholar 

  • Zherikhin, V.V., Biocoenotic regulation of evolution, Paleontol. Zh., 1987, no. 1, pp. 3–12.

    Google Scholar 

  • Zherikhin, V.V., Evolutionary biocoenology: Problem of the choice of models, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Reorganizations and Evolution of the Biosphere), Moscow: Nedra, 1994, pp. 13–20.

    Google Scholar 

  • Zuckerkandl, E., Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine, Genetics, 2002, vol. 115, pp. 105–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Vislobokova.

Additional information

Devoted to Academician A.Yu. Rozanov and all Knights of the Study of Nature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vislobokova, I.A. The concept of macroevolution in view of modern data. Paleontol. J. 51, 799–898 (2017). https://doi.org/10.1134/S0031030117080019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030117080019

Keywords

Navigation