Abstract
A review of physicochemical properties, photochemistry, functions, and evolution of retinal-containing proteins (microbial and of metazoan rhodopsins, mostly visual rhodopsins) is provided. Comparative physiology of visual rhodopsins is considered in detail, mainly the molecular mechanisms of their spectral tuning.
Similar content being viewed by others
References
Abu-Khamidakh, E., Demchuk, Yu.V., Zak, P.P., et al., Shortwave light filtration in the formation of spectral sensitivity in two populations of the shrimp M. relicta (Mysida), Vestn. Mosk. Gos. Univ. Ser. Biol., 2010, no. 2, pp. 9–14.
Audzijonyte, A., Pahlberg, J., Viljanen, M., et al., Opsin gene sequence variation across phylogenetic and population histories in Mysis (Crustacea: Mysida) does not match current light environments or visual-pigment absorbance spectra, Mol. Ecol., 2012, vol. 21, pp. 2176–2196.
Belikov, N., Yakovleva, M., Feldman, T., et al., Lake and sea populations of Mysis relicta (Crustacea, Mysida) with different visual-pigment absorbance spectra use the same A1 chromophore, PLoS, 2014, vol. 9, no. 2, pp. 1–8.
Bowmaker, J.K. and Hunt, D.M., Evolution of vertebrate visual pigments, Curr. Biol., 2006, vol. 16, no. 13, pp. 484–489.
Bridges, C.D.B., The rhodopsin–porphyropsin visual system, in Handbook of Sensory Physiology, vol. 2. Photochemistry of Vision, Dartnall, H.J.A., Ed., Berlin: Springer, 1972, pp. 417–480.
Collin, S.P., Knight, M.A., Davies, W.L., et al., Ancient colour vision: Multiple opsin genes in the ancestral vertebrates, Curr. Biol., 2003, vol. 13, pp. 864–865.
Consani, C., Braem, O., and Oskouei, A.A., Ultrafast (bio)physical and (bio)chemical dynamics, Chimia (Aarau.), 2011, vol. 65, no. 9, pp. 683–690.
Dartnall, H.A.J. and Lythgoe, J.N., The spectral clustering of visual pigments, Vis. Res., 1965, vol. 5, pp. 81–100.
Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.
Deisseroth, K., Optogenetics: 10 years of microbial opsins in neuroscience, Nature Neurosci., 2015, vol. 18, no. 9, pp. 1213–1225.
Dolgikh, D.A., Malyshev, A.Yu., Salozhin, S.V., et al., Anion channel rhodopsin, expressed in culture of neurons and in vivo in the mouse brain: Light-induced suppression of generation of potentials of action, Dokl. Akad. Nauk, 2015, vol. 465, no. 6, pp. 737–740.
Donner, K., Zak, P., Viljanen, M., et al., Eye special sensitivity in fresh- and brackish populations of three glacial-relict Mysis species (Crustacea): Physiology and genetics of differential tuning, J. Comp. Physiol. Ser. A, 2016, vol. 202, no. 4, pp. 297–312.
Dontsov, A.E., Fedorovich, I.B., Lindstrom, M., and Ostrovsky, M.A., Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance, J. Comp. Physiol. Ser. B, 1999, vol. 169, no. 3, pp. 157–164.
Enright, J.M., Toomey, M.B., Sato, S., et al., Cyp27c1 redshifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2, Curr. Biol., 2015, vol. 25, pp. 3048–3057.
Feldman, T.B., Femtosecond spectroscopic study of photochromic reactions of bacterial and animal rhodopsins, Photochem. Photobiol. (in press).
Feldman, T., Yakovleva, M., Lindström, M., et al., Eye adaptation to different light environment in two populations of Mysis relicta: A comparative study of carotenoids and retinoids, J. Crustac. Biol., 2010, vol. 30, no. 4, pp. 636–642.
Feuda, R., Hamilton, S.C., McInerney, J.O., and Pisani, D., Metazoan opsin evolution reveals a simple route to animal vision, Proc. Nat. Acad. Sci. USA, 2012, vol. 109, pp. 18868–18872.
Fitch, M., Distinguishing homologous from analogous proteins, Syst. Zool., 1970, vol. 19, no. 2, pp. 99–113.
Frank, T.M., Porter, M., and Cronin, T.W., Spectral sensitivity, visual pigments and screening pigments in two life history stages of the ontogenetic migrator Gnathophausia ingens, J. Mar. Biol. Assoc. UK, 2009, vol. 89, no. 1, pp. 119–129.
Fuhrman, J.A., Schwalbach, M.S., and Stingl, U., Proteorhodopsins: An array of physiological roles?, Nature Rev. Microbiol., 2008, vol. 6, no. 6, pp. 488–494.
Gelis, L., Wolf, S., Hatt, H., et al., Prediction of a ligandbinding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling, Angew. Chem., Int. Ed. Engl., 2012, vol. 51, pp. 1274–1278.
Govardovsky, L.A. and Astakhov, M.L., Specificit of physiological and biochemical mechanisms of excitation and adaptation of cones in the retina, Sensor. Sist., 2015, vol. 29, no. 4, pp. 296–308.
Govorunova, E.G., Sineshchekov, O.A., Janz, R., et al., Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics, Science, 2015, vol. 349, no. 6248, pp. 647–650.
Grote, M. and O’Malley, M.A., Enlightening the life sciences: The history of halobacterial and microbial rhodopsin research, FEMS Microbiol. Rev., 2011, vol. 35, no. 6, pp. 1082–1099.
Hankins, M., Peirson, S., and Foster, R., Melanopsin: An exciting photopigment, Trends Neurosci., 2008, vol. 3, pp. 27–36.
Harosi, F.I., An analysis of two spectral properties of vertebrate visual pigments, Vis. Res., 1994, vol. 34, pp. 1359–1367.
Hunt, D.M., Carvalho, L.S., Cowing, J.A., et al., Spectral tuning of shortwave-sensitive visual pigments in vertebrates, Photochem. Photobiol., 2007, vol. 83, no. 2, pp. 303–310.
Jokela-Maatta, M., Pahlberg, J., Lindstrom, M., et al., Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments, J. Comp. Physiol. A, 2005, vol. 191, no. 12, pp. 1087–1097.
Katritch, V., Cherezov, V., and Stevens, R.C., Diversity and modularity of G protein-coupled receptor structures, Trends Pharm. Sci., 2012, vol. 33, no. 1, pp. 17–27.
Khain, V.E., On the mainstreams in modern Earth sciences, Vestn. Mosk. Ross. Akad. Nauk. 2009, vol. 79, no. 1, pp. 50–56.
Kirpichnikov, M.P. and Ostrovsky, M.A., and prosthetics of degenerative retina, Vestn. Oftal’m., 2015, vol. 131, no. 3, pp. 99–111.
Krishnan, A., Almen, M.S., Fredriksson, R., and Schioth, H.B., The origin of GPCRs: Identification of mammalian like rhodopsin, adhesion, glutamate and frizzled GPCRs in fungi, PLoS, 2012, vol. 7, pp. e29817.
Lamb, T.D., Evolution of vertebrate retinal photoreception, Phil. Trans. Roy. Soc. B, 2009, vol. 364, no. 1531, pp. 2911–2924.
Lamb, T.D., Evolution of the eye: Scientists now have a clear vision of how our notoriously complex eye came to be, Sci. Am., 2011, vol. 305, no. 1, pp. 64–69.
Lamb, T.D., Collin, S.P., and Pugh, E.N., Jr., Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup, Nature Rev. Neurosci., 2007, vol. 8, pp. 960–975.
Li, J., Edwards, P.C., Burghammer, M., et al., Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 2004, vol. 343, pp. 1409–1413.
Lindstrom, M., Eye function of Mysidacea (Crustacea) in the northern Baltic Sea, J. Exp. Mar. Biol. Ecol., 2000, vol. 246, pp. 85–101.
Lindstrom, M. and Nilsson, H.L., Eye function of Mysis relicta (Crustacea) from two photic environments: Spectral sensitivity and light tolerance, J. Exp. Mar. Biol. Ecol., 1988, vol. 120, pp. 23–37.
Luk, H.L., Melaccio, F., Rinaldi, S., et al., Molecular bases for the selection of the chromophore of animal rhodopsins, Proc. Nat. Acad. Sci. USA, 2015, vol. 112, pp. 15297–15302.
Mackin, A., Roy, R.A., and Theobald, D.L., An empirical test of convergent evolution in rhodopsins, Mol. Biol. Evol., 2014, vol. 31, pp. 85–95.
Mancuso, K., Hauswirth, W.W., and Li, Q., Gene therapy for redgreen colour blindness in adult primates, Nature, 2009, vol. 461, pp. 784–787.
Martinez, T.J., Seaming is believing, Nature, 2010, vol. 467, pp. 412–413.
Nadtochenko, V.A., Smitienko, O.A., Feldman, T.B., et al., Conical intersection participation in femtosecond dynamics of visual pigment rhodopsin chromophore cis-trans photoisomerization, Dokl. Biochem. Biophys., 2012, vol. 446, pp. 242–246.
Nilson, D.E., Eye evolution and its functional basis, Vis. Neurosci., 2013, vol. 30, pp. 5–20.
Nilsson, H.L., Eye function of Mysis relicta (Crustacea) from two photic environments: Spectral sensitivity and light tolerance, J. Exp. Mar. Biol. Ecol., 1988, vol. 120, pp. 23–37.
Nordstreom, K.J., Almren, M.S., Edstam, M.M., et al., Independent HH search, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families, Mol. Biol. Evol., 2011, vol. 28, no. 9, pp. 2471–2480.
Novitsky, I.Yu., Zak, P.P., and Ostrovsky, M.A., Influence of anions on spectral properties of iodopsin in native cones of the retina of frog (microspectrophotometric investigation), Bioorgan. Khimiya., 1989, vol. 15, no. 8, pp. 1037–1043.
Ostrovsky, M.A., Chapter 5. Photoreception, in Rukovodstvo po fiziologii (Handbook on Physiology), vol. 5. Fiziologiya sensornykh sistem. Chast’ 1. Fiziologiya zreniya (Physiology of Sensory Systems: Part 1. Physiology of Vision), Leningrad: Nauka, 1971, pp. 88–119.
Ostrovsky, M.A. and Feldman, T.B., Chemistry and molecular physiology of vision: Photosensitive protein rhodopsin, Usp. Khim., 2012, vol. 81, no. 11, pp. 1071–1090.
Ostrovsky, M.A. and Kirpichnikov, M.P., Optogenetics and vision, Sens. Sist., 2015, vol. 25, no. 4, pp. 289–295.
Park, J.H., Morizumi, T., Li, Y., et al., Opsin, a structural model for olfactory receptors?, Angew. Chem., Int. Ed. Engl., 2013, vol. 52, pp. 11021–11024.
Pele, J., Abdi, H., Moreau, M., et al., Multidimensional scaling reveals the main evolutionary pathways of class A Gprotein-coupled receptors, PLoS, 2011, vol. 6, pp. e19094.
Pierce, K.L., Premont, R.T., and Lefkowitz, R.J., Signalling: Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 639–650.
Polli, D., Altoè, P., and Weingart, O., Conical intersection dynamics of the primary photoisomerization event in vision, Nature, 2010, vol. 467, pp. 440–443.
Rodieck, R.W., The First Steps in Seeing, Sunderland: Sinauer Assoc., 1998.
Rozanov, A.Yu., Life conditions on the early Earth after 4.0 Ga, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009, pp. 185–201.
Schoenlein, R.W., Peteanu, L.A., Mathies, R.A., and Shank, C.V., The first step in vision: Femtosecond isomerization of rhodopsin, Science, 1991, vol. 254, pp. 412–415.
Schwanzara, S.A., The visual pigments of freshwater fishes, Vis. Res., 1967, vol. 7, pp. 121–148.
Shen, L., Chen, C., Zheng, H., and Jin, L., The evolutionary relationship between microbial rhodopsins and Metazoan rhodopsins, Sci. World J., 2013. http://dx.doi.org/. doi 0.1155/2013/435651
Sineshchekov, O.A., Jung, KH., and Spudich, J.L., Two rhododopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no. 13, pp. 8689–8694.
Slobodyanskaya, E.M., Abrashin, E.V., and Ostrovsky, M.A., Investigation of ionochromic properties of visual pigments in chicken, Bioorgan. Khim., 1980, vol. 6, no. 2, pp. 223–229.
Smitienko, O., Nadtochenko, V., Feldman, T., et al., Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: A concept for ultrafast optical molecular switch creation, Molecules, 2014, vol. 19, no. 11, pp. 18351–18366.
Spudich, J.L., Yang, C.S., Jung, K.H., and Spudich, E.N., Retinylidene proteins: Structures and functions from archaea to humans, Ann. Rev. Cell. Dev. Biol., 2000, vol. 16, pp. 365–392.
Suzuki, T., Arigawa, K., and Eguchi, E., The effects of light and temperature on the rhodopsin-porphyropsin visual system of the crayfish Procambarus clarkia, Zool. Sci., 1985, vol. 2, pp. 455–461.
Suzuki, T., Makino-Tasaka, M., and Eguchi, E., 3-dehydroretinal (vitamin A2 aldehyde) in crayfish eye, Vis. Res., 1984, vol. 24, no. 8, pp. 783–787.
Suzuki, T., Terakita, A., and Tsin, A.T.C., Retinoid metabolism and conversion of retinol to dehydroretinol in the crayfish (Procambarus clarkii) retina, Comp. Biochem. Physiol., 1993, vol. 105B, pp. 257–261.
Temple, S.E., Plate, E.M., Ramsden, S., et al., Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch), J. Comp. Physiol. A, 2006, vol. 192, pp. 301–313.
Terakita, A., The opsins, Genome Biol., 2005, vol. 6, no. 3, pp. 213.1–213.9.
Walls, G.L., The Vertebrate Eye and Its Adaptive Radiation, Bloomfield Hills: Cranbrook Inst. of Sci., 1942.
Wand, A., Gdor, I., Zhu, J., et al., Shedding new light on retinal protein photochemistry, Ann. Rev. Phys. Chem., 2013, vol. 64, pp. 437–458.
Waschuk, S.A., Bezerra, A.G., Shi, L., and Brown, L.S., Leptosphaeria rhodopsin: Bacteriorhodopsin-like proton pump from an eukaryote, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, no. 19, pp. 6879–6883.
Wolf, S. and Grunewald, S., Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: A crystal structure-based phylogenetic analysis, PLoS, 2015, vol. 10, no. 4, pp. e0123533.
Zak, P.P., Lindströ m, M., Demchuk, Yu.V., et al., Eyes of the shrimp Mysis relicta (Crustacea, Mysidae) contain two types of visual pigments located in different photoreceptors, Dokl. Ross. Akad. Nauk, 2013, vol. 449, no. 2, pp. 240–245.
Zak, P.P., Ostrovsky, M.A., and Bowmaker, J.K., Ionochronic properties of long-wave-sensitive cones in the goldfish retina: An electrophysiological and microspectrophotometric study, Vis. Res., 2001, vol. 41, pp. 1755–1763.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © M.A. Ostrovsky, 2017, published in Paleontologicheskii Zhurnal, 2017, No. 5, pp. 103–113.
Rights and permissions
About this article
Cite this article
Ostrovsky, M.A. Rhodopsin: Evolution and comparative physiology. Paleontol. J. 51, 562–572 (2017). https://doi.org/10.1134/S0031030117050069
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0031030117050069