Skip to main content
Log in

Initial growth deceleration as an immanent property of plants

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

A previously published sectional model of the system of tree branches (spruce) was expanded in the range (0,1) of the fractal model parameter μ, which links the value of green biomass of a “tree” to its size. The presence of branches in this range indicates the realization of green biomass in the form of photosynthe-sizing “points”, and is interpreted as endosymbiosis of cyanobacteria with protists. Using the method of box dimensionality, the parameter μ was estimated for the sets of points within an interval. The properties of the uniform and group distributions are shown to be different. For the group distribution, the trajectories of parameter μ are fundamentally different, depending on the method of point grouping, i.e., they decrease with an increase in the total number of points for a fixed number of points n g in the groups and increase for a fixed number N g groups. The initial endosymbiosis of cyanobacteria and “protists” is characterized by a lack of the necessary infrastructure in protists for feeding cyanobacteria and distributing their products and, thus, by a fixed number of “points” in the group. As the infrastructure of protists developed in the course of evolution, endosymbiosis tended to move towards an increased number of points in the group and, accordingly, increased μ. A special form of the dependence of parameter μ(N g *n g ) provides the inherent nature of the initial growth deceleration and modularity of architecture, which are occasionally observed in extant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borisov, N.M., Vorob’ev, F.Yu., Gilyarov, A.M, Eskov, K.Yu., Zhuravlev, A.Yu., Markov, A.V., Oskol’skii, A.A., Petrov, P.N., and Shipunov, A.B., Evidence of Evolution, Markova, A.V., Ed., 2010. http://evolbiol.ru/evidence.htm.

  • Eskov, K.Yu.,. Udivitel’naya paleontologiya. Istoriya zemli i zhizni na nei (Amazing Paleontology: History of the Earth and Life on It), Moscow: Nauchn. Tsentr ENAS, 2008.

    Google Scholar 

  • Feder, J., Fractals, New York: Plenum Press, 1988.

  • Galitskii, V.V., On the dynamics of altitudinal distribution of the biomass of a freely growing tree: Model analysis, Dokl. Akad. Nauk Biol. Sci., 2006, vol. 407, no. 4, pp. 564–566.

    Google Scholar 

  • Galitskii, V.V., Model analysis of the dynamics of distant transportation of assimilators of a freely growing tree, Electr. Zh. Matem. Biol. Bioinform, 2009, vol. 4, no. 1, pp. 1–19. http://www.matbio.org/downloads/Galitskii2009(4_1).pdf.

    Google Scholar 

  • Galitskii, V.V., Sectional tree structure: Model analysis of vertical distribution of biomass, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 19–29.

    Google Scholar 

  • Galitskii, V.V., Biomass dynamics of higher-order tree branches: An analysis of the model, Biol. Bull. Rev., 2013a, vol. 3, no. 5, pp. 412–421.

    Article  Google Scholar 

  • Galitskii, V.V., On the Evolution of the Tree Shape with Reference to the Fractal Parameters, 2013b. http://vixra.org/ abs/1311.0105.

    Google Scholar 

  • Galitskii, V.V., Evolutionary trajectories in the space of the parameters of the sectional model of green biomass of the spruce crown, in Materialy Chetvertoi natsional’noi nauchnoi konferentsii s mezhdunarodnym uchastiem “Matematicheskoe modelirovanie v ekologii, Pushchino, 18–22 maya, 2015 (Materials of the Fourth National Scientific Conference with International Participation on the Mathematical Modeling in Ecology, Pushchino, May 18–22, 2015), Pushchino: Inst. Fiz.–Khim. Biol. Pochvoved. Ross. Akad. Nauk, 2015, pp. 39–40. http://ecomodelling.ru/emm2015/ files/EcolMod2015_Proceedings.pdf.

    Google Scholar 

  • Gamalei, Yu.V., The origin and localization of plant organelles, Fiziol. Rast., 2009, vol. 44, no. 1, pp. 115–137.

    Google Scholar 

  • Hanson, M.R. and Kohler, R.H., A novel view of chloroplast structure, in Plant Physiology Online, 2006. http://5e.plantphys.net/article.php?ch=&id=122.

    Google Scholar 

  • Kazimirov, N.I., El’niki Karelii (Spruce Forests of Karelia), Leningrad: Nauka, 1971.

    Google Scholar 

  • Kramer, P.J. and Kozlovski, T.T., Physiology of Trees, New York: Academic Press, 1979.

    Google Scholar 

  • Kursanov, A.L., Transport assimilyatov v rastenii (Transportation of Assimilators in Plants), Moscow: Nauka, 1976.

    Google Scholar 

  • Margulis, L., Symbiosis in Cell Evolution, San Francisco: Freeman, W.H. and Co., 1981.

    Google Scholar 

  • Margulis, L., Serial endosymbiotic theory (SET) and composite individuality: Transition from bacterial to eukaryotic genomes, Microbiol. Today, 2004, vol. 31, pp. 172–174.

    Google Scholar 

  • Niklas, K.J., Morphological evolution through complex domains of fitness, in Tempo and Mode in Evolution: Genetics and Paleontology, 50 years after Simpson, Fitch, W.M. and Ayala, F.J., Eds., Washington, DC: Nat. Acad. Press, 1995, pp. 145–165.

    Google Scholar 

  • Nystedt, B., Street, N.R., Wetterbom, A., Zuccolo, A., Lin, Y.C., Scofield, D.G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., et al., The Norway spruce genome sequence and conifer genome evolution, Nature, 2013, vol. 497, pp. 579–584.

    Article  Google Scholar 

  • Poletaev, I.A., On the mathematical models of elementary processes in biogeocoenoses, Probl. Kibernet., 1966, vol. 16, pp. 171–190.

    Google Scholar 

  • Serebryakova, T.I., Voronin, N.S., Elenevskii, A.G, Batygina, T.B., Shorina, R.I., and Savinykh, N.P., Botanika s osnovami fitotsenologii: Anatomiya i morfologiya rastenii (Botany with the Foundation of Phytocoenology: Plant Anatomy and Morphology), Moscow: Akademkniga, 2006.

    Google Scholar 

  • Smith, D.M., A Fortran Package for floating-point multiple-precision arithmetic, ACM Trans. Math. Softw., 1991, vol. 17, pp. 273–283.

    Article  Google Scholar 

  • Tomlinson, P.B. and Haggett, B.A., Partial shoot reiteration in Wollemia nobilis (Araucariaceae) does not arise from “axillary meristems,” Ann. Bot., 2011, vol. 107, pp. 909–916.

  • Treskin, P.P., Patterns of morphogenesis of the skeletal part of the crown of adult spruce trees, in Struktura i produktivnost’ elovykh lesov yuzhnoi taigi (Structure and Productivity of the Spruce Forests of Southern Taiga), Leningrad: Nauka, 1973, pp. 222–240.

    Google Scholar 

  • Tsel’niker, Yu.L., Structure of the spruce tree crown, Lesovedenie, 1994, no. 4, pp. 35–44.

    Google Scholar 

  • Zavarzin, G.A., Ombrophiles—inhabitants of plains, Priroda (Moscow, Russ. Fed.), 2009, no. 6, pp. 3–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Galitskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galitskii, V.V. Initial growth deceleration as an immanent property of plants. Paleontol. J. 50, 1549–1559 (2016). https://doi.org/10.1134/S0031030116130050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030116130050

Keywords

Navigation