Skip to main content
Log in

Participation of algal–bacterial community in the formation of modern stromatolites in Cock Soda Lake, Altai Region

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Modern dolomite stromatolites are found in Cock Soda Lake (Kulunda Steppe) at a salinity of 100–200 g/L and pH of 10. The mineralogical analysis has revealed the presence in the stromatolites of Ca⎯Mg-carbonates of various compositions. The organisms–edificators of the phototrophic community developing in the lake are determined. They are identified as a part of the mineralized biota (cyanobacteria, bacteria, and eukaryotic alga Ctenocladus circinnatus). Morphological and ultrastructural features of exopolysaccharides secreted by cyanobacteria and bacteria dominant in the phototrophic community are characterized. It is shown that polysaccharides secreted primarily by cyanobacteria have the utmost importance for the formation of stromatolites in Petukhovskoe Soda Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkalofil’nye mikrobnye soobshchestva (Alcalophilic Microbial Communities) Gal’chenko, V.F., Ed., Moscow: Nauka, 2007.

  • Arp, G., Hofmann, J., and Reitner, J., Microbial Fabric Formation in Spring Mounds (“Microbialites”) of aikaline salt lakes in the Badain Jaran Sand Sea, PRChina, Palaios, 1998, vol. 13, pp. 581–592.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., Calcification in cyanobacterial biofilms of alkaline salt lakes, Eur. J. Phycol., 1999, vol. 34, pp. 393–403.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., Photosynthesisinduced biofilm calcification and calcium concentrations in Phanerozoic oceans, Science, 2001, vol. 292, pp. 1701–1704.

    Article  Google Scholar 

  • Blinn, D.W. and Stein, J.R., Distribution and taxonomic reappraisal of Ctenocladus (Chlorophyceae: Chaetophorales), J. Phycol., 1970, vol. 6, pp. 101–105.

    Google Scholar 

  • Bosak, T. and Newman, D.K., Microbial nucleation of calcium carbonate in the Precambrian, Geology, 2003, vol. 31, pp. 577–580.

    Article  Google Scholar 

  • Casanova, J., Stromatolites from the East African Rift: A synopsis, in Phanerozoic Stromatolites II, BertrandSarfati, J. and Monty, C., Eds., Dordrecht: Kluwer Acad. Publ., 1994, pp. 193–226.

    Chapter  Google Scholar 

  • Couradeau, E., Benzerara, K., Gerard, E., et al., Cyanobacterial calcification in modern microbialites at the submicrometer scale, Biogeosciences, 2013, vol. 10, pp. 5255–5266.

    Article  Google Scholar 

  • Deelman, J.C., Low-temperature formation of dolomite and magnesite. Version 2.3.2011. http://www.jcdeelman.demon.nl/dolomite/bookprospectus.html.

  • Ferris, F.G., Wiese, R.G., and Fyfe, W.S., Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget, Geomicrobiol. J., 1994, vol. 12, pp. 1–13.

    Article  Google Scholar 

  • Frolov, V.T., Litologiya (Lithology), Moscow: Mosk. Gos. Univ., vol. 1, 1992.

  • Gebler, I.V., Petukhovskie soda lakes, Izv. Sibir. Tekhnol. Inst., 1927, vol. 47, nos. 1–6, pp. 47–60.

    Google Scholar 

  • Gérard, E., Ménez, B., Couradeau, E., et al., Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico), ISME J., 2013, vol. 7, pp. 1997–2009.

    Article  Google Scholar 

  • Gregg, J.M., Bish, D.L., Kaczmarek, S.E., and Machel, H.G., Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review, Sedimentology, 2015, vol. 62, no. 6, pp. 1749–1769.

    Article  Google Scholar 

  • Guiry, M.D. and Guiry, G.M., AlgaeBase. World-wide electronic publication, Galway: Nat. Univ. Ireland, 2015. http://www.algaebase.org

    Google Scholar 

  • Isachenko, B.L., Chloride, sulfate, and soda lakes of the Kulunda Steppe and biogenic processes in them, in Izbrannye trudy (Selected Works), Moscow: Akad. Nauk SSSR, 1951, vol. 2, pp. 143–162.

    Google Scholar 

  • Kehr, J.-C. and Dittman, E., Biosynthesis and function of extrcellular glycans in Cyanobacteria, Life, 2015, vol. 5, pp. 164–180.

    Article  Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., et al., Largest known microbialites discovered in Lake Van, Turkey, Nature, 1991, vol. 349, no. 6310, pp. 605–608.

    Article  Google Scholar 

  • Kuznetsov, V.G., Interrelation of sedimentation and bacterial–algal communities: evolutionary aspect, in Vodorosli v evolyutsii biosfery. Ser. Geo-biologicheskie sistemy v proshlom (Algae in the Evolution of the Biosphere: Series of the Geobiological Systems in the Past), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 84–98.

    Google Scholar 

  • Lebedeva Verba, M.P., Lopukhina, O.V., and Kalinina, N.V., Features of the chemical–mineralogical composition of salts in alkali–saline soils and lakes of the Kulunda Steppe, Pochvovedenie, 2008, no. 4, pp. 467–480.

    Google Scholar 

  • Logvinenko, N.V., Karpova, G.V., and Kosmachev, V.G., On magnesia calcites of sedimentary genesis, Litol. Polezn. Iskop., 1986, no. 4, pp. 119–127.

    Google Scholar 

  • McKenzie, J.A. and Vasconcelos, C., Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives, Sedimentology, 2009, vol. 56, pp. 205–219.

    Article  Google Scholar 

  • Meister, P., Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments, Geology, 2013, vol. 41, pp. 499–502.

    Article  Google Scholar 

  • Müller, G., Irion, G., and Förstner, U., Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment, Naturwissenschaften, 1972, vol. 59, pp. 158–164.

    Article  Google Scholar 

  • Pereira, S., Zille, A., Micheletti, E., et al., Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly, FEMS Microbiol. Rev., 2009, vol. 33, pp. 917–941.

    Article  Google Scholar 

  • Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.

    Google Scholar 

  • Renaut, R.W., Recent carbonate sedimentation and brine evolution in the saline lake basins of the Cariboo Plateau, British Columbia, Canada, Hydrobiologia, 1990, vol. 197, pp. 67–81.

    Article  Google Scholar 

  • Renaut, R.W. and Long, P.R., Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada, Sedim. Geol., 1989, vol. 64, pp. 239–264.

    Article  Google Scholar 

  • Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–213.

    Article  Google Scholar 

  • Ribbe, P.H., Reeder, R.J., Goldsmith, J.R., et al., Carbonates: Mineralogy and Chemistry, Reeder, R.J., Ed., Washington, DC: Mineral. Soc. Am., 1983.

  • Riding, R., The term stromatolite: Towards an essential definition, Lethaia, 1999, vol. 32, pp. 321–330.

    Article  Google Scholar 

  • Riding, R., The nature of stromatolites: 3,500 million years of history and a century of research, in Advances in Stromatolite Geobiology: Lecture Notes in Earth Sciences 131, Reitner, J., Queric, N.-V., and Arp, G., Eds., Heidelberg: Springer, 2011, pp. 29–74.

    Chapter  Google Scholar 

  • Rossi, F. and De Philippis, R., Role of the cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats, Life, 2015, vol. 5, pp. 1218–1238.

    Article  Google Scholar 

  • Samylina, O.S., Sapozhnikov, F.V., Gainanova, O.Yu., et al., Algal–bacterial communities of soda lakes in the Kulunda Steppe (Altai Region, Russia), Mikrobiologiya, 2015, vol. 84, no. 1, pp. 107–119.

    Google Scholar 

  • Samylina, O.S. and Zaytseva, L.V., Modern stromatolites from Petukhovskoe soda lake (Altai Region, Russia), Vodorosli v evolyutsii biosfery. Materialy I paleoal’gologicheskoi konferentsii (I Paleoalgological Conference on the Algae in the Evolution of the Biosphere), 2013, pp. 114–117.

    Google Scholar 

  • Schultze-Lam, S., Ferris, F.G., Sherwood-Lollar, B., and Gerits, J.P., Ultrastructure and seasonal growth patterns of microbial mats in a temperate climate saline-alkaline lake: Goodenough lake, British Columbia, Canada, Can. J. Microbiol., 1996, vol. 42, pp. 147–161.

    Article  Google Scholar 

  • Shvartsev, S.L., Kolpakova, M.N., Isupova, V.P., et al., Geochemistry of the formation of the composition of salty lakes of western Mongolia, Geokhimiya, 2014, no. 5, pp. 432–449.

    Google Scholar 

  • Sorokin, D.Y., Berben, T., Melton, E.D., et al., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, 2014, vol. 18, pp. 791–809.

    Article  Google Scholar 

  • Stüeken, E.E., Buick, R., and Schauer, A.J., Nitrogen isotope evidence for alkaline lakes on Late Archean continents, Earth Planet. Sci. Lett., 2015, vol. 411, pp. 1–10.

    Article  Google Scholar 

  • Telentyuk, E.S., Hydrochemistry of lakes of Tanatar and waters supplying them, Tr. Vsesoyuzn. Nauchno–Issled. Inst. Galurgii, 1952, vol. 24, pp. 162–228.

    Google Scholar 

  • Vasil’ev, E.K. and Vasil’eva, N.P., Rentgenograficheskii opredelitel' karbonatov (Radiographic Key to Carbonates), Novosibirsk: Nauka, 1980.

    Google Scholar 

  • Zavarzin, G.A., Epicontinental soda ponds as prospective relict biotopes of the formation of the terrestrial biota, Mikrobiologiya, 1993, vol. 62, pp. 789–800.

    Google Scholar 

  • Zavarzina, D.G. and Zhilina, T.N., Anaerobic communities of soda lakes as analogues of paleocontinental microbiota of the Precambrian, in Rannyaya kolonizatsiya sushi. Seriya Geo-biologicheskie sistemy v proshlom (Early Colonization of the Dry Land: Series of the Geobiological Systems in the Past), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2012, pp. 69–91.

    Google Scholar 

  • Zaytseva, L.V., Investigation of accumulation of calcium and magnesium in mineralized covers of filamentous cyanobacteria under the influence of various factorLs, in Biokosnye vzaimodeistviya: zhizn' i kamen' (Bioinert Interactions: Life and Stone), St. Petersburg: St. Peterb. Gos. Univ., 2011, pp. 300–330.

    Google Scholar 

  • Zaytseva, L.V., Orleanskii, V.K., Alekseev, A.O., et al., Transformation of carbonate minerals in cyanobacterial mat in laboratory modeling, Mikrobiologiya, 2007, vol. 76, pp. 390–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Samylina.

Additional information

Original Russian Text © O.S. Samylina, L.V. Zaytseva, M.A. Sinetova, 2016, published in Paleontologicheskii Zhurnal, 2016, No. 6, pp. 92–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samylina, O.S., Zaytseva, L.V. & Sinetova, M.A. Participation of algal–bacterial community in the formation of modern stromatolites in Cock Soda Lake, Altai Region. Paleontol. J. 50, 635–645 (2016). https://doi.org/10.1134/S0031030116060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030116060137

Keywords

Navigation