Skip to main content
Log in

General features of echinoderm skeleton formation

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Available data on the formation of echinoderm skeleton are reviewed based on the literature. The development and structural features of the skeleton and morphological, histological, and molecular data on the skeleton formation in different echinoderm groups are described. Recent data on the study of gene regulatory networks and their effect on biomineraization and skeleton formation are also included. The skeletogenic mechanisms are in general highly conservative within echinoderms at the levels of genes, gene regulatory networks, and involved cell populations. At the same time, the formation mechanism of the echinoderm skeleton is unique and has not been recorded in other taxonomic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameye, L., Compère, P., Dille, J., and Dubois, P., Ultrastructure and cytochemistry of the early calcification site and of its mineralization organic matrix in Paracentrotus lividus (Echinodermata: Echinoidea), Histochem. Cell Biol., 1998, vol. 110, pp. 285–294.

    Article  Google Scholar 

  • Ameye, L., De Becker, G., Killian, C., et al., Proteins and saccharides of the sea urchin organic matrix of mineralization: Characterization and localization in the spine skeleton, J. Struct. Biol., 2001, vol. 134, pp. 56–66.

    Article  Google Scholar 

  • Ausich, W.I. and Baumiller, T.K., Taphonomic method for determining muscular articulations in fossil crinoids, Palaios, 1993, vol. 8, no. 5, pp. 477–484.

    Article  Google Scholar 

  • Bennett, K.C., Young, C.M., and Emlet, R.B., Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei, Biol. Bull., 2012, vol. 222, no. 2, pp. 105–117.

    Google Scholar 

  • Bottjer, D.J., Davidson, E.H., Peterson, K.J., and Cameron, R.A., Paleogenomics of echinoderms, Science, 2006, vol. 314, no. 5801, pp. 956–960.

    Article  Google Scholar 

  • Clausen, S. and Smith, A.B., Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora), Nature, 2005, vol. 438, no. 7066, pp. 351–354.

    Article  Google Scholar 

  • Donovan, S.K., The improbability of a muscular crinoid column, Lethaia, 1989, vol. 22, no. 3, pp. 307–315.

    Article  Google Scholar 

  • Ettensohn, C.A., Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis, Development, 2009, vol. 136, no. 1, pp. 11–21.

    Article  Google Scholar 

  • Ettensohn, C.A., Kitazawa, C., Cheers, M.S., et al., Gene regulatory networks and developmental plasticity in the early sea urchin embryo: Alternative deployment of the skeletogenic gene regulatory network, Development, 2007, vol. 134, no. 17, pp. 3077–3087.

    Article  Google Scholar 

  • Fedotov, D.M., The Phylum Echinodermata, in Rukovodstvo po zoologii (Handbook on Zoology), Moscow: Sovet. Nauka, 1951, vol. 3, part 2, pp. 460–591.

    Google Scholar 

  • Gage, J.D., Skeletal growth markers in the deep-sea brittle stars Ophiura ljungmani and Ophiomusium lymani, Marine Biol., 1990, vol. 104, no. 3, pp. 427–435.

    Article  Google Scholar 

  • Gao, F. and Davidson, E.H., Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution, Proc. Nat. Acad. Sci., 2008, vol. 105, no. 16, pp. 6091–6096.

    Article  Google Scholar 

  • Gilbert, P.U.P.A. and Wilt, F.H., Molecular aspects of biomineralization of the echinoderm endoskeleton, in Molecular Biomineralization, Berlin-Heidelberg: Springer, 2011, pp. 199–223.

    Chapter  Google Scholar 

  • Gliznutsa, L.A. and Dautov, S.Sh., Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lutken, 1872 (Echinodermata: Ophiuroidea), Rus. J. Marine Biol., 2011, vol. 37, no. 5, pp. 384–400.

    Article  Google Scholar 

  • Hinman, V.F., Nguyen, A.T., Cameron, R.A., and Davidson, E.H., Developmental gene regulatory network architecture across 500 million years of echinoderm evolution, Proc. Nat. Acad. Sci., 2003, vol. 100, no. 23, pp. 13356–13361.

    Article  Google Scholar 

  • Jefferies, R.P.S., The Ancestry of the Vertebrates, London: Brit. Mus. Natur. Hist., 1986.

    Google Scholar 

  • Lapham, K.E., Ausich, W.I., and Lane, N.G., A technique for developing the stereom of fossil crinoid ossicles, J. Paleontol., 1976, vol. 2, no. 50, pp. 245–248.

    Google Scholar 

  • Märkel, K., Röser, U., Mackenstedt, U., and Klostermann, M., Ultrastructural investigation of matrixmediated biomineralization in echinoids (Echinodermata, Echinoida), Zoomorphology, 1986, vol. 106, no. 4, pp. 232–243.

    Article  Google Scholar 

  • Nakano, E., Okazaki, K., and Iwamatsu, T., Accumulation of radioactive calcium in larvae of the sea urchin Pseudocentrotus depressus, Biol. Bull., 1963, vol. 125, pp. 125–132.

    Article  Google Scholar 

  • Okazaki, K., Skeleton formation of sea urchin larvae: 1. Effect of Ca concentration of the medium, Biol. Bull., 1956, vol. 110, no. 3, pp. 320–333.

    Article  Google Scholar 

  • Okazaki, K., Spicule formation by isolated micromeres of the sea urchin embryo, Am. Zool., 1975, vol. 15, no. 3, pp. 567–581.

    Google Scholar 

  • Raz, S., Hamilton, P.C., Wilt, F.H., et al., The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization, Adv. Funct. Mater., 2003, vol. 13, no. 6, pp. 480–486.

    Article  Google Scholar 

  • Roux, M., Microstructural analysis of the crinoid stem, Univ. Kansas Paleontol. Contrib., 1975, vol. 75, pp. 1–7.

    Google Scholar 

  • Sevastopulo, G.D. and Keegan, J.B., A technique for revealing the stereom structure of fossil crinoids, Palaeontology, 1980, vol. 23, no. 4, pp. 749–756.

    Google Scholar 

  • Smith, A.B., The structure and arrangement of echinoid tubercles, Phil. Trans. R. Soc. London, Ser. B Biol. Sci., 1980, vol. 289, no. 1033, pp. 1–54.

    Article  Google Scholar 

  • Vinnikova, V.V. and Drozdov, A.,L., Ultrastructure of spines in regular sea urchins of the family Strongylocentrotidae, Zool. Zh., 2011, vol. 90, no. 5, pp. 573–579.

    Google Scholar 

  • Wilt, F.H., Matrix and mineral in the sea urchin larval skeleton, J. Struct. Biol., 1999, vol. 126, no. 3, pp. 216–226.

    Article  Google Scholar 

  • Wilt, F.H., Killian, C.E., Hamilton, P., and Croker, L., The dynamics of secretion during sea urchin embryonic skeleton formation, Exp. Cell Res., 2008, vol. 314, pp. 1744–1752.

    Article  Google Scholar 

  • Wray, G.A. and McClay, D.R., The origin of spicule-forming cells in a’ primitive’ sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells, Development, 1988, vol. 103, no. 2, pp. 305–315.

    Google Scholar 

  • Yajima, M., A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae, Dev. Biol., 2007, vol. 307, no. 2, pp. 272–281.

    Article  Google Scholar 

  • Yajima, M. and Kiyomoto, M., Study of larval and adult skeletogenic cells in developing sea urchin larvae, Biol. Bull., 2006, vol. 211, no. 2, pp. 183–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kokorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokorin, A.I., Mirantsev, G.V. & Rozhnov, S.V. General features of echinoderm skeleton formation. Paleontol. J. 48, 1532–1539 (2014). https://doi.org/10.1134/S0031030114140056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030114140056

Keywords

Navigation