Developmental stability in vaccinated Atlantic salmon (Salmo salar L.): Deformities and fluctuating asymmetry of bone structures

Abstract

Vaccination has recently become a widely considered factor influencing the development of farmed fishes. In the present study, developmental stability of bone structures of vaccinated and nonvaccinated Atlantic salmon is investigated using two parameters, the frequency of deformities and fluctuating asymmetry (FA, nondirectional deviations from perfect bilateral symmetry). Vaccinated salmon show a higher frequency of bone deformities, suggesting a decrease in developmental stability caused by vaccination. On the contrary, the level of FA does not differ in vaccinated and nonvaccinated fishes. The results are discussed from the point of view of influence of mechanical load on the development of bone structures of the Atlantic salmon.

This is a preview of subscription content, access via your institution.

References

  1. Aunsmo, A., Guttvik, A., Midtlyng, P.J., et al., Association of spinal deformity and vaccine induced abdominal lesions in harvest-sized Atlantic salmon, Salmo salar L., J. Fish Dis., 2008, vol. 31, pp. 515–524.

    Article  Google Scholar 

  2. Ballintijn, C.M. and Hughes, G.M., The muscular basis of the respiratory pumps in the trout, J. Exp. Biol., 1965, vol. 43, pp. 349–362.

    Google Scholar 

  3. Berg, A., Rødseth, O.M., Tångeras, A., and Hansen, T., Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar, Des. Aquat. Org., 2006, vol. 69, nos. 2–3, pp. 239–248.

    Article  Google Scholar 

  4. Berg, A., Rødseth, O.M., and Hansen, T., Fish size at vaccination influence the development of side-effects in Atlantic salmon (Salmo salar L.), Aquaculture, 2007, vol. 265, pp. 9–15.

    Article  Google Scholar 

  5. Berg, A., Yurtseva, A., Hansen, T., et al., Vaccinated farmed Atlantic salmon are susceptible to spinal and skull deformities, J. Appl. Ichthyol., 2012, vol. 28, pp. 446–452.

    Article  Google Scholar 

  6. Developmental Instability: Causes and Consequences, Polak, M., Ed., Oxford: Oxford Univ. Press. 2003.

    Google Scholar 

  7. Diogo, R., Hinits, Y., and Hughes, S.M., Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: Homologies and evolution of these muscles within bony fishes and tetrapods, BMC Develop. Biol., 2008, vol. 8, no. 24, pp. 1–22.

    Google Scholar 

  8. Fjelldal, P.G., Grotmol, S., Kryvi, H., et al., Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar, J. Pineal Res., 2004, vol. 36, pp. 132–139.

    Article  Google Scholar 

  9. Fjelldal, P.G., Hansen, T.J., and Berg, A.E., A radiological study on the development of vertebral deformities in cultured Atlantic salmon (Salmo salar L.), Aquaculture, 2007, vol. 273, pp. 721–728.

    Article  Google Scholar 

  10. Fjelldal, P.G., Lock, E.J., Grotmol, S., et al., Impact of smolt production strategy on vertebral growth and mineralisation during smoltification and the early seawater phase in Atlantic salmon (Salmo salar L.), Aquaculture, 2006, vol. 261, pp. 715–728.

    Article  Google Scholar 

  11. Glowacki, J., Cox, K.A., O’Sullivan, J., et al., Osteoclasts can be induced in fish having an acellular bony skeleton, Proc. Nat. Acad. Sci. USA, 1986, vol. 83, pp. 4101–4107.

    Article  Google Scholar 

  12. Graham, J.H., Freeman, D.C., and Emlen, J.M., Developmental stability: A sensitive indicator of populations under stress, in Environmental Toxicology and Risk Assessment, Landis, W.G., Hughes, J.S., and Lewis, M.A, Eds., Philadelphia: Am. Soc. Test. Mater., 1993, pp. 136–158.

    Google Scholar 

  13. Grini, A., Hansen, T., Berg, A., et al., The effect of water temperature on vertebral deformities and vaccine-induced abdominal lesions in Atlantic salmon (Salmo salar L.), J. Fish Dis., 2011, vol. 34, pp. 531–546.

    Article  Google Scholar 

  14. Helland, S., Denstadli, V., Witten, P.E., et al., Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid, Aquaculture, 2006, vol. 261, no. 2, pp. 603–614.

    Article  Google Scholar 

  15. Helland, S., Refstie, S., Hjelde, K., and Baeverfjord, G., Morphological description of skeletal deformities in Atlantic salmon subject to restricted mineral supply, in Workshop on Bone Disorders in Intensive Aquaculture of Salmon and Cod, Bergen: NIFES, 2005, p..

    Google Scholar 

  16. Huysseune, A., Skeletal system, in The Laboratory Fish: Part 4. Microscopic Functional Anatomy, Ostrander, G.K., Eds., San Diego: Academic Press, 2000, pp. 307–317.

    Google Scholar 

  17. Kranenbarg, S., van Cleynenbreugel, T., Schipper, H., and van Leeuwen, J., Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.), J. Exp. Biol., 2005, vol. 208, pp. 3493–3502.

    Article  Google Scholar 

  18. Kvellestad, A., Hoie, S., Thorud, K., et al., Platyspondyly and shortness of vertebral column in farmed Atlantic salmon Salmo salar in Norway—description and interpretation of pathological changes, Dis. Aquat. Org., 2000, vol. 39, pp. 97–108.

    Article  Google Scholar 

  19. Lajus, D.L., Variation patterns of bilateral characters: Variation among characters and among populations in the White Sea herring (Clupea pallasi marisalbi), Biol. J. Linn. Soc., 2001, vol. 74, pp. 237–253.

    Google Scholar 

  20. Lajus, D., Knust, R., and Brix, O., Fluctuating asymmetry and other parameters of morphological variation of eelpout Zoarces viviparus (Zoarcidae, Teleostei) from different parts of its distributional range, Sarsia, 2003, vol. 88, pp. 247–260.

    Article  Google Scholar 

  21. Lakin, G.F., Biometriya (Biometrics), Moscow: Vyssh. Shkola, 1990.

    Google Scholar 

  22. Larssen, R.B. and Djupvik, H.O., Early life risk indicators of skeletal deformities in salmon at slaughter, in Workshop on Bone Disorders in Intensive Aquaculture of Salmon and Cod, Bergen: NIFES, 2005, p. 36.

    Google Scholar 

  23. Lillehaug, A., Lunder, T., and Poppe, T.T., Field testing of adjuvanted furunculosis vaccines in Atlantic salmon, Salmo salar L., J. Fish Des., 1992, vol. 15, pp. 485–496.

    Article  Google Scholar 

  24. Martens, L.G., Lock, E.J., Fjelldal, P.G., et al., Dietary fatty acids and inflammation in the vertebral column of Atlantic salmon, Salmo salar L., smolts: A possible link to spinal deformities, J. Fish Dis., 2010, vol. 33, pp. 957–972.

    Article  Google Scholar 

  25. Midtlyng, P.J. and Lillehaug, A., Growth of Atlantic salmon Salmo salar after intraperitoneal administration of vaccines containing adjuvants, Dis. Aquat. Org., 1998, vol. 32, pp. 91–97.

    Article  Google Scholar 

  26. Midtlyng, P.J., Reitan, L.J., and Speilberg, L., Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis, Fish Shellfish Immunol., 1996, vol. 6, pp. 335–350.

    Article  Google Scholar 

  27. Møller, A.P. and Swaddle, J.P., Asymmetry, Developmental Stability, and Evolution, Oxford: University Press, 1997.

    Google Scholar 

  28. Oppedal, F., Berg, A., Olsen, R.E., et al., Photoperiod in seawater influence seasonal growth and chemical composition in autumn sea-transferred Atlantic salmon (Salmo salar L.) given two vaccines, Aquaculture, 2006, vol. 254, pp. 396–410.

    Article  Google Scholar 

  29. Palmer, A.R., Fluctuating asymmetry analyses: A primer, in Developmental Instability: Its Origins and Evolutionary Implications, Markow, T.A., Ed., 1994, pp. 335–364.

    Google Scholar 

  30. Palmer, A.R. and Strobeck, C., Fluctuating asymmetry: Measurement, analysis, patterns, Ann. Rev. Ecol. Syst., 1986, vol. 17, pp. 391–421.

    Article  Google Scholar 

  31. Reist, J.D., An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation, Can. J. Zool., 1986, vol. 64, pp. 1363–1368.

    Article  Google Scholar 

  32. Sørum, U. and Damsgå, B., Effects of anaesthetization and vaccination on feed intake and growth in Atlantic salmon (Salmo salar L.), Aquaculture, 2004, vol. 232, pp. 333–341.

    Article  Google Scholar 

  33. Tchernavin, V.V., On the mechanical working of the head of bony fishes, Proc. Zool. Soc., London, 1948, vol. 118,part 1, pp. 129–143.

    Google Scholar 

  34. Treasurer, J. and Cox, C., Intraperitoneal and dorsal median sinus vaccination effects on growth, immune response, and reproductive potential in farmed Atlantic salmon Salmo salar, Aquaculture, 2008, vol. 275, pp. 51–57.

    Article  Google Scholar 

  35. Vågsholm, I. and Djupvik, O., Risk factors for spinal deformities in Atlantic salmon, Salmo salar L., J. Fish Dis., 1998, vol. 21, pp. 47–53.

    Article  Google Scholar 

  36. Van Valen, L., A study of fluctuating asymmetry, Evolution, 1962, vol. 16, no. 2, pp. 125–142.

    Article  Google Scholar 

  37. Waagbø, R., Kryvi, H., Breck, O., and Ønsrud, R., Final Report from Workshop on Bone Disorders in Intensive Aquaculture of Salmon and Cod, Bergen: NIFES, 2005, Report, no. 164773, pp. 1–41.

    Google Scholar 

  38. Waddington, C.H., The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology, London, 1957.

    Google Scholar 

  39. Wargelius, A., Fjelldal, P.G., and Hansen, T., Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar), Dev. Genes Evol., 2005, vol. 215, pp. 350–357.

    Article  Google Scholar 

  40. Westneat, M.W., Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models, J. Morphol., 1990, vol. 205, pp. 269–295.

    Article  Google Scholar 

  41. Witten, P.E., Gil-Martens, L., Hall, B.K., et al., Compressed vertebrae in Atlantic salmon (Salmo salar): Evidence for metaplastic chondrogenesis as a skeletogenic response late in ontogeny, Dis. Aquat. Org., 2005, vol. 64, pp. 237–246.

    Article  Google Scholar 

  42. Witten, P.E. and Hall, B.K., Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): Remodeling and regression of the kype after spawning, J. Anat., 2003, vol. 203, pp. 435–450.

    Article  Google Scholar 

  43. Witten, P.E., Obach, A., Huysseune, A., and Baeverfjord, G., Vertebrae fusion in Atlantic salmon (Salmo salar): Development, aggravation and pathways of containment, Aquaculture, 2006, vol. 258, nos. 1–4, pp. 164–172.

    Article  Google Scholar 

  44. Witten, P.E. and Villwock, W., Growth requires bone resorption at particular skeletal elements in a teleost fish with acellular bone (Oreochromis niloticus, Teleostei: Cichlidae), J. Appl. Ichthyol., 1997, vol. 13, pp. 149–158.

    Article  Google Scholar 

  45. Yurtseva, A., Lajus, D., Artamonova, V., and Makhrov, A., Effect of hatchery environment on cranial morphology and developmental stability of Atlantic salmon (Salmo salar L.) from north-west Russia, J. Appl. Ichthyol., 2010, vol. 26, no. 2, pp. 307–314.

    Article  Google Scholar 

  46. Zakharov, V.M., Asimmetriya zhivotnykh (populyatsionno-fenogeneticheskii podkhod) (Asymmetry of Animals: Population Phenogenetic Approach), Moscow: Nauka, 1987.

    Google Scholar 

  47. Zakharov, V.M., Future prospects for population phenogenetics, Sov. Sci. Rev. F. Physiol. Gen. Biol., 1989, vol. 4, pp. 1–79.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. O. Yurtseva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yurtseva, A.O., Lajus, D.L., Berg, A. et al. Developmental stability in vaccinated Atlantic salmon (Salmo salar L.): Deformities and fluctuating asymmetry of bone structures. Paleontol. J. 48, 1266–1274 (2014). https://doi.org/10.1134/S0031030114120156

Download citation

Keywords

  • Atlantic salmon
  • vaccination
  • deformities
  • fluctuating asymmetry