Paleontological Journal

, Volume 48, Issue 11, pp 1183–1193 | Cite as

Bilateral symmetry in ontogeny and regeneration of solitary Rugosa (Cnidaria; Paleozoic)

  • S. V. RozhnovEmail author


The widespread lateral attachment in solitary Rugosa (tetracorals) is evidence that their planula settled down and became attached by its ventral side. The symmetry plane of Rugosa corallites, which is marked by the cardinal and counter septa, coincides with the larval plane of symmetry, which is marked by the position of the cardinal septum and attachment scar on the same side of the corallite. This strongly suggests that rugose coral larvae had paired mesenteries at least on the ventral side. Direct or remote soft-bodied rugose coral ancestors had a planula-like body shape and paired ventral and, probably, dorsal mesenteries. They were benthic, crawling on the ventral side, and fed on bottom semi-decomposed organic matter. The study of regeneration in rugose corals has shown that all of three ways of regeneration occur in their skeletons (epimorphosis, morphallaxis, and compensatory regeneration). The morphallaxis is manifested in small buds on dead parent corallites. The study of the development of these buds has shown that their septa were formed under the influence of the surface relief of the parent corallite bearing the bud. At the early stages of bud development, mesenteries were probably absent.


Rugosa corals planula regeneration morphallaxis mesenteries ontogenesis comparative morphology Carboniferous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agata, K., Saito, Y., and Nakajima, E., Unifying principles of regeneration. I: Epimorphosis versus morphallaxis, Devel. Growth Diff., 2007, no. 49, pp. 73–78.Google Scholar
  2. Batygina, T.B., Embriologiya tsvetkovykh rastenii. Terminologiya i kontseptsii (Embryology of Flowering Plants: Terminology and Concepts), vol. 3 Sistemy reproduktsii (Reproductive Systems), St. Petersburg: Mir Sem’ya, 2000.Google Scholar
  3. Birenhide, R., Haben die rugosen Korallen Mesenterien gehabt?, Senckenb. Lethaea, 1965, vol. 46, pp. 27–34.Google Scholar
  4. Budd, A.F., Romano, S.L., Smith, N.D., and Barbeitos, M.S., Rethinking the phylogeny of scleractinian corals: A review of morphological and molecular data, Integr. Compar. Biol., 2010, vol. 50, no. 3, pp. 411–427.CrossRefGoogle Scholar
  5. Dobrolyubova, T.A., Solitary corals of Myachkovian and Podolskian Regional stages of the Middle Carboniferous of the Moscow Region Basin, Tr. Paleozool. Inst. Akad. Nauk SSSR, 1937, vol. 6, no. 3, pp. 5–92.Google Scholar
  6. Dobrolyubova, T.A., The corals Rugosa from the Upper Carboniferous of the Moscow Region Basin, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1940, vol. 9, no. 3, pp. 1–88.Google Scholar
  7. Edwards, H.M. and Haime, J., A Monograph of the British Fossil Corals: Part 1, London: Palaeontogr. Soc. Monogr., 1850.Google Scholar
  8. Elias, R.J., Solitary rugose corals of the Selkirk Member, Red River Formation (late Middle or Upper Ordovician), southern Manitoba, Geol. Surv. Can. Bull., 1981, vol. 344, pp. 1–53.Google Scholar
  9. Elias, R.J., Latest Ordovician solitary rugose corals of eastern North America, Bull. Am. Paleontol., 1982a, vol. 81, pp. 1582–1598.Google Scholar
  10. Elias, R.J., Paleoecology and biostratinomy of solitary rugose corals in the Stony Mountain Formation (Upper Ordovician), Stony Mountain, Manitoba, Canada, Can. J. Earth Sci., 1982b, no. 19, pp. 1582–1598.Google Scholar
  11. Fadlallah, Y.H., Sexual reproduction, development and larval biology in scleractinian corals: A review, Coral Reefs, 1983a, vol. 2, p. 12950.CrossRefGoogle Scholar
  12. Gilbert, S., Developmental Biology, 9 ed., Sunderland, Massachusetts USA: Sinauer Ass. Inc. Publ, 2010.Google Scholar
  13. Heltzel, P.S. and Babcock, R.C., Sexual reproduction, larval development and benthic planulae of the solitary coral Monomyces rubrum (Scleractinia: Anthozoa), Mar. Biol. (Berlin), 2002, vol. 140, p. 65967.Google Scholar
  14. Hill, D., Treatise on Invertebrate Paleontology, Part F, suppl. 1 Rugosa and Tabulata, Teichert, C., Ed., Boulder-Colorado-Lawrence, Kansas: Geol. Soc. Am. Univ. Kansas Press, 1981.Google Scholar
  15. Iljina, T.G., Historical development of corals: Suborder Polycoeliina, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1984, vol. 198, pp. 1–184.Google Scholar
  16. Keller, N.B., Glubokovodnye skleraktinievye korally (Deepwater Scleractinian Corals), Moscow: Krasand, 2012.Google Scholar
  17. Kuzmicheva, E.I., Morphology of the skeleton, system, and evolution of scleractinian corals, Tr. Paleontol. Inst. Akad. Nauk SSSR, 2002, vol. 286, pp. 1–212.Google Scholar
  18. Neuman, B.E.E., Some aspects of life strategies of Early Palaeozoic rugose corals, Lethaia, 1988, vol. 21, pp. 97–114.CrossRefGoogle Scholar
  19. Oliver, W.A., The relationship of the scleractinian corals to the rugose corals, Paleobiology, 1980, vol. 6, no. 2, pp. 146–160.Google Scholar
  20. Oliver, W.A., Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia, Paleontol. Soc. Pap., 1996, no. 1, pp. 107–134.Google Scholar
  21. Polteva, D.G., Regeneration and somatic embryogenesis in actinians, Tr. Leningr. Ob-va Estestvoispyt., 1972, vol. 78, no. 4, pp. 171–232.Google Scholar
  22. Rozhnov, S.V., Somatic embryogenesis in Bothrophyllum conicum (Rugosa), Paleontol. Zh., 1974, no. 3, pp. 16–22.Google Scholar
  23. Rozhnov, S.V., Development of the trophic structure of Vendian and Early Paleozoic marine communities, Paleontol. J. (Moscow), 2009, vol. 43, no. 11, pp. 1364–1377.CrossRefGoogle Scholar
  24. Scrutton, C.T., The Palaeozoic corals: I. Origins and relationships, Proc. Yorkshire Geol. Soc., 1997, vol. 51, no. 3, pp. 177–208.CrossRefGoogle Scholar
  25. Scrutton, C.T., The Palaeozoic corals: II. Structure, variation and palaeoecology, Proc. Yorkshire Geol. Soc., 1998, vol. 52, pp. 1–57.CrossRefGoogle Scholar
  26. Sorauf, J.E., The coral skeleton: Analogy and comparisons, Scleractinia, Rugosa and Tabulata, Cour. Forschung. Senck., 1993, vol. 164, pp. 63–70.Google Scholar
  27. Stolarski, J., Kitahara, M.V., Miller, D.J., et al., The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals, BMS Evol. Biol., 2011, vol. 11, p. 316.CrossRefGoogle Scholar
  28. Tokin, B.P., Regeneratsiya i somaticheskii embriogenez (Regeneration and Somatic Embryogenesis), Leningrad: Leningr. Gos. Unov., 1959.Google Scholar
  29. Wells, J.W., Scleractinia, in Treatise on Invertebrate Paleontology, Part F: Coelenterata, Moore, R.C., Ed., Boulder-Colorado-Lawrence, Kansas: Geol. Soc. Am. Univ. Kansas Press, 1956, pp. 328–444.Google Scholar
  30. Wells, J.W. and Hill, D., Anthozoa—general features, Treatise on Invertebrate Paleontology, Part F: Coelenterata, Moore, R.C., Ed., Boulder-Colorado-Lawrence, Kansas: Geol. Soc. Am. Univ. Kansas Press, 1956, pp. 161–165.Google Scholar
  31. Yakovlev, N.N., On the morphology and morphogeny of the coral group Rugosa, Izv. St. Peterb. Biol. Lab., 1904, vol. 7, no. 2, p. 87.Google Scholar
  32. Yakovlev, N.N., On the origin of distinctive features of Rugosa, Tr. Geol. Kom., 1910, vol. 66, pp. 1–32.Google Scholar
  33. Yakovlev, N.N., Etudes about the corals Rugosa, Tr. Geol. Kom., 1914, vol. 96, pp. 1–33.Google Scholar
  34. Yakovlev, N.N., On distinctions between the corals Rugosa and Hexacoralla and on the origin of their distinctive features, Ezheg. Vseross. Paleontol. Ob-va, 1937, vol. 11, pp. 41–48.Google Scholar
  35. Yakovlev, N.N., Initial factors in the development of the coral polyps Zoantharia, Dokl. Akad. Nauk SSSR, 1945, vol. 48, no. 6, pp. 460–463.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations