Skip to main content
Log in

Symmetry transformations in ontogeny and evolution

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Symmetry transformations are fundamental phenomena in the development and evolution of multicellular animals. Symmetry transformations at the cellular level during oogenesis and early development determine the basic axes of the future body, whereas the scale of these transformations is reduced in further development. In addition to the classical symmetry types, such as rotational (radial), mirror (bilateral), and translational symmetries, characteristic of biological processes is scale symmetry (self-similarity symmetry). The chaos is growing during fractal morphogenesis and other manifestations of fluctuating asymmetry. Biological symmetry and other variants of morphofunctional iterations are an effective way of morphogenesis via iteration of genetic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam, M., Hox genes: From master genes to micromanagers, Curr. Biol., 1998, vol. 24, pp. 676–678.

    Article  Google Scholar 

  • Andres, F., Sarrazin, A.F., Peel, A.D., and Averof, M., A segmentation clock with two-segment periodicity in insects, Science, 2012, vol. 336, pp. 338–341.

    Article  Google Scholar 

  • Aulehla, A. and Pourquié, O., Signaling gradients during paraxial mesoderm development, Cold Spring Harb. Perspect. Biol. 2, 2010, p. a000869.

    Google Scholar 

  • Baum, B., Left-right asymmetry: Actin-myosin through the looking glass, Curr. Biol., 2006, vol. 16, pp. R502–R504.

    Article  Google Scholar 

  • Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Fundamentals of Invertebrate Comparative Anatomy), vol. 1: Promorfologiya (Promorphology), Moscow: Nauka, 1964.

    Google Scholar 

  • Beloussov, L.V., Self-organization, symmetry and morphomechanics in development of organisms, in Embryology—Updates and Highlights on Classic Topics, Pereira, L.A.V., Ed., Rijeka: InTech, 2012, pp. 189–210.

    Google Scholar 

  • Bouligand, Y., Morphological singularities and macroevolution, Mem. Soc. Ital. Sci. Natur. Mus. Civ. Stor. Natur. Milano, 1996, vol. 27, pp. 89–94.

    Google Scholar 

  • Chernyshev, A.V. and Isaeva, V.V., Formation of the chaotic patterns of gastrovascular systems of the jellyfish Aurelia aurita in ontogeny, Biol. Morya, 2002, vol. 28, pp. 377–381.

    Google Scholar 

  • Craig, S.F., Slobodkin, L.B., Wray, G.A., and Biermann, C.H., The “paradox” of polyembryony: A review of the cases and a hypothesis for its evolution, Evol. Ecol., 1997, vol. 11, pp. 127–143.

    Article  Google Scholar 

  • Davidson, E.H., The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, San Diego: Academic Press, 2006.

    Google Scholar 

  • Davies, J.A., Why a book on branching, and why now?, in Branching morphogenesis, Davies, J.A., Ed., New York: Eurekah. Com and Springer Science+Business Med., 2005, pp. 1–7.

    Chapter  Google Scholar 

  • Dogel’, V.A., Obshchaya parazitologiya (General Parasitology), Leningrad, 1962.

    Google Scholar 

  • Fleury, V., Watanabe, T., Nguyen, T.-H., et al., Physical mechanisms of branching morphogenesis in animals: From viscous fingering to cartilage rings branching morphogenesis, in Branching morphogenesis, Davies, J.A., Ed., New York: Eurekah. Com and Springer Science+Business Med., 2005, pp. 202–234.

    Chapter  Google Scholar 

  • Fusco, G., Trunk segment numbers and sequential segmentation in myriapods, Evol. Devel., 2005, vol. 7, pp. 608–617.

    Article  Google Scholar 

  • Gardner, M., Etot pravyi, levyi mir (This Right, Left World), Moscow: Komkniga, 2007.

    Google Scholar 

  • Gilbert, S.F., Developmental Biology, Sunderland: Sinauer Ass. Inc. Uubl., 2006.

    Google Scholar 

  • Goldstein, B. and Hird, S.N., Specification of the anteroposterior axis in Caenorhabditis elegans, Development, 1996, vol. 122, pp. 1467–1474.

    Google Scholar 

  • Gould, S.J., The Structure of Evolutionary Theory, Cambridge: Harvard Univ. Dress. 2002.

    Google Scholar 

  • Hall, B.K., The neural crest as a fourth germ layer and vertebrates a quadroblastic not triploblastic, Evol. Develop., 2000, vol. 2, pp. 3–5.

    Article  Google Scholar 

  • Hirokawa, N., Tanaka, Y., and Okada, Y., Left-right determination: Involvement of molecular motor KIF3, cilia, and nodal flow, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, p. a000802.

    Article  Google Scholar 

  • Holland, P.W.H., Beyond the Hox: How widespread is homeobox gene clustering?, J. Anat., 2001, vol. 199, pp. 13–23.

    Article  Google Scholar 

  • Isaeva, V.V., Kletki v morfogeneze (Cells in Morphogenesis), Moscow: Nauka, 1994.

    Google Scholar 

  • Isaeva, V.V., Sinergetika dlya biologov. Vvodnyi kurs (Synergetrics for Biologists: Propaedeutics), Moscow: Nauka, 2005.

    Google Scholar 

  • Isaeva, V.V., Fractal and chaotic patterns of animals, Tr. Zool. Inst. Ross. Akad. Nauk: Prilozhenie, 2009, no. 1, pp. 199–218.

    Google Scholar 

  • Isaeva, V.V., Karetin, Yu.A., Chernyshev, A.V., and Shkuratov, D.Yu., Fraktaly i khaos v biologicheskom morfogeneze (Fractals and Chaos in Biological Morphogenesis), Vladivostok: Dal’nauka, 2004.

    Google Scholar 

  • Isaeva, V.V., Kasyanov, N.V., and Presnov, E.V., Analysis situs of spatial-temporal architecture in biological morphogenesis, in Progress in Mathematical Biology Research, Kelly, J.T., Ed., New York: Nov. Sci. Publ., 2008, pp. 141–189.

    Google Scholar 

  • Isaeva, V.V., Kasyanov, N.V., and Presnov, E.V., Topological singularities and symmetry breaking in development, Bio-Systems, 2012, vol. 109, pp. 280–298.

    Article  Google Scholar 

  • Isaeva, V.V., Presnov, E.V., and Chernyshev, A.V., Topological patterns in metazoan evolution and development, Bull. Math. Biol., 2006, vol. 68, pp. 2053–2067.

    Article  Google Scholar 

  • Isaeva, V.V., Pushchina, E.V., and Karetin, Yu.A., Changes in morphometric parameters and fractal dimensions of spinal marrow neurons in ontogeny of the cherry salmon Oncorhynchus masou, Biol. Morya, 2006, vol. 32, pp. 125–133.

    Google Scholar 

  • Jean, R.V., Fillotaksis: sistemnoe issledovanie morfogeneza rastenii (Phyllotaxis: System Study of Plant Morphogenesis), Moscow-Izhevsk: Nauch.-Issled. Tsetr “Regul. Haot. Dinam.”, Inst. Komp. Issled., 2006.

    Google Scholar 

  • Johnson, M.N. and Maro, B.A., A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: The role of cytoskeletal elements, J. Embryol. Exp. Morphol., 1985, vol. 90, pp. 311–334.

    Google Scholar 

  • Kirschner, M.W. and Gerhart, J.C., The Plausibility of Life, New Haven-London: Yale Univ. Press, 2005.

    Google Scholar 

  • Kirschner, M., Newport, J., and Gerhart, J., The timing of early developmental events in Xenopus, Trends Genet., 1985, vol. 1, pp. 41–47.

    Article  Google Scholar 

  • Korchagina, N.M., Bakalenko, N.I., and Kulakova, M.A., Hox-claster and evolution of morphogeneses, Ontogenez, 2010, vol. 41, no. 5, pp. 353–363.

    Google Scholar 

  • Kyozuka, K., The mechanism of sperm penetration in starfish, Bull. Mar. Biol. Stn. Asamushi, Tohoku Univ., 1993, vol. 19, pp. 1–15.

    Google Scholar 

  • Levine, M. and Davidson, E.H., Gene regulatory networks for development, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, pp. 4936–4942.

    Article  Google Scholar 

  • Lewis, E.B., A gene complex controlling segmentation in Drosophila, Nature, 1978, vol. 276, pp. 565–570.

    Article  Google Scholar 

  • Lewis, J., Yanisch, A., and Holder, M., Notch signaling, the segmentation clock, and the patterning of vertebrate somites, J. Biol., 2009, vol. 8, p. 44.

    Article  Google Scholar 

  • Li, R. and Bowerman, B., Symmetry breaking in biology, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, p. a003475.

    Article  Google Scholar 

  • Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1983.

    Google Scholar 

  • Manuel, M., Early evolution of symmetry and polarity in metazoan body plans, C. R. Biol., 2009, vol. 332, pp. 184–209.

    Article  Google Scholar 

  • Metzger, R.J. and Krasnow, M.A., Genetic control of branching morphogenesis, Science, 1999, vol. 284, pp. 1635–1639.

    Article  Google Scholar 

  • Minelli, A., The Development of Animal Form: Ontogeny, Morphology, and Evolution, Cambridge: Cambridge Univ. Press, 2003.

    Book  Google Scholar 

  • Nuccitelli, R., The involvement of transcellular ion currents and electric fields in pattern formation, in Pattern Formation: A Primer in Developmental Biology, Malacinski, G.M. and Bryant, S.V., Eds., London: MacMillan, 1984, pp. 23–46.

    Google Scholar 

  • Nüsslein-Volhard, C., Determination of the embryonic axes of Drosophila, Development, 1991, suppl. no. 1, pp. 1–10.

    Google Scholar 

  • Oates, A.C., Morelli, L.G., and Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock, Development, 2012, vol. 139, pp. 625–639.

    Article  Google Scholar 

  • Presnov, E., Isaeva, V., and Kasyanov, N., Topological determination of early morphogenesis in Metazoa, Theor. Biosci., 2010, vol. 129, pp. 259–270.

    Article  Google Scholar 

  • Pueyo, JI., Lanfear, R., and Couso, J.P., Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta Americana, Proc. Nat. Acad. Sci. USA, 2008, vol. 105, pp. 16614–16619.

    Article  Google Scholar 

  • Raff, R.A. and Raff, E.C., Evolution in the light of embryos: seeking the origins of novelties in ontogeny, in Form and Function in Developmental Evolution, Laubichler, M.D. and Maienschein, J., Eds., Cambridge: Cambridge Univ. Press, 2009, pp. 83–111.

    Chapter  Google Scholar 

  • Raff, R.A. and Sly, B.J., Modularity and dissociation in the evolution of gene expression territories in development, Evol. Devel., 2000, vol. 2, pp. 102–113.

    Article  Google Scholar 

  • Rasskin-Gutman, D. and Izpisua-Belmonte, J.C., Theoretical morphology of developmental asymmetries, BioEssays, 2004, vol. 26, pp. 405–412.

    Article  Google Scholar 

  • Rosen, J., Symmetry Rules, Berlin-Heidelberg: Springer, 2008.

    Book  Google Scholar 

  • Sawada, T., The mechanism of ooplasmic segregation in the ascidian egg, Zool. Sci., 1988, vol. 5, pp. 667–675.

    Google Scholar 

  • Schier, A.F., Nodal Morphogens, in Cold Spring Harb. Perspect. Biol., 2009, no. 1, pp. a003459.

    Google Scholar 

  • Scholtz, G., On comparisons and causes in evolutionary developmental biology, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge: Cambridge Univ. Press. 2008, pp. 144–159.

    Chapter  Google Scholar 

  • Shapiro, B.M., Schackman, R.W., and Gabel, C.A., Molecular approaches to the study of fertilization, Ann. Rev. Biochem., 1981, vol. 50, pp. 815–843.

    Article  Google Scholar 

  • Shinohara, K., Kawasumi, A., Takamatsu, A., et al., Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo, Nat. Commun., 2012, vol. 3, p. 622.

    Article  Google Scholar 

  • Shubnikov, A.V., Symmetry of similarity, Krist, 1960, vol. 5, no. 4, pp. 489–496.

    Google Scholar 

  • Stuart, I., Kakoi formy snezhinka? Magicheskie chisla v prirode (What Is the Shape of a Snowflake? Magic Numbers in the Nature), Moscow: Mir Knigi, 2007.

    Google Scholar 

  • Thom, R., Strukturnaya ustoichivost’ i morfogenez (Structural Stability and Morphogenesis), Moscow: Logos, 2002.

    Google Scholar 

  • Urmantsev, Yu.A., Simmetriya prirody i priroda simmetrii (Symmetry of Nature and Nature of Symmetry), Moscow: Komkniga, 2007.

    Google Scholar 

  • Wagner, G.P., Mezey, J., and Calabretta, R., Natural selection and the origin of modules, in Modularity: Understanding the Development and Evolution of Natural Complex Systems: The Vienna Series in Theoretical Biology, Callebaut, W. and Rasskin-Gutman, D., Eds., London: MIT Press, 2005, pp. 33–50.

    Google Scholar 

  • Warburton, D., Schwarz, M., Tefft, D., et al., the molecular basis of lung morphogene-sis, Mech. Devel., 2000, vol. 92, pp. 55–81.

    Article  Google Scholar 

  • Weibel, E.R., Fractal geometry—a design principle for living organisms, Am. J. Physiol., 1991, vol. 261 P, pp. 361–369.

    Google Scholar 

  • Weyl, G., Simmetriya (Symmetry), Moscow: URSS, 2003.

    Google Scholar 

  • Wilkins, A.S., The Evolution of Developmental Pathways, Sunderland, USA: Sinauer, 2002.

    Google Scholar 

  • Winther, R.G., Evolutionary developmental biology meets levels of selection: Modular integration or competition, or both?, in Modularity: Understanding the Development and Evolution of Natural Complex Systems: The Vienna Series in Theoretical Biology, Callebaut, W. and Rasskin-Gutman, D., Eds., London: MIT Press, 2005, pp. 61–90.

    Google Scholar 

  • Zakharov, V.M., Asimmetriya zhivotnykh (Asymmetry of Animals), Moscow: Nauka, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Isaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, V.V. Symmetry transformations in ontogeny and evolution. Paleontol. J. 48, 1127–1136 (2014). https://doi.org/10.1134/S0031030114110057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030114110057

Keywords

Navigation