Paleontological Journal

, Volume 47, Issue 11, pp 1252–1269 | Cite as

An embryonic enantiornithine bird and associated eggs from the cretaceous of Mongolia

  • E. N. Kurochkin
  • S. Chatterjee
  • K. E. Mikhailov
Article

Abstract

Enantiornithes is the most speciose clade of Cretaceous birds, but many taxa are known from isolated postcranial skeletons. Two embryonic enantiornithine bird skeletons of Gobipipus reshetovi gen. et sp. nov. from the Upper Cretaceous (Campanian) Barun Goyot Formation of the Gobi Desert in Mongolia provide new insights into the anatomy, radiation, and mode of development of early avialans. In recent times, both enantiornithine and ornithuromorph birds are known from the Barun Goyot Formation as well as from the Djadokhta and Nemegt Formations. The 80-million-year-old Gobipipus skeletons encased within eggshells shows several features characteristic of enantiornithine birds. The wing skeleton and shoulder girdle show morphological features indicating that Gobipipus achieved sophisticated powered flight. Gobipipus reshetovi gen. et sp. nov. is quite distinct from the sympatric enantiornithine species Gobipteryx minuta from the same strata in many anatomical features. Phylogenetic analysis of 26 avialan ingroup taxa based on distribution of 202 characters indicate that Gobipipus is a basal member of enantiornithine birds along with Confuciusornis and shares more characters with ornithuromorphs than previously recognized. The embryonic nature of Gobipipus specimens sheds new light on the developmental history of enantiornithine birds. The well-ossified bones of the fore- and hind limbs, and fusion of many skeletal elements indicate a precocial mode of development in Gobipipus. Apparently Gobipipus hatchlings could walk away from the ground nests as soon as they emerged from their eggs. The asymmetry of egg poles are unique features of Gobipipus eggs (oogenus Gobioolithus) among Cretaceous avialans. The microstructure of the shell in Gobioolithus eggs with the embryos of Gobipipus is typical avian (of ornithoid basic type) and less ratite-like in morphology of the spongy layer than is that in the other possible egg-remains of enantiornitine birds (oofamily Laevisoolithidae).

Keywords

embryos and eggs enantiornithine bird Gobipipus Gobioolithus Upper Cretaceous Barun Goyot Formation Gobi Desert 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarenga, H.M.F. and Bonaparte, J.F., A new flightless land bird from the Cretaceous of Patagonia, in Papers in Avian Paleontology, Honoring Pierce Brodkorb, Campbell, K.E., Ed., Natur. Hist. Mus. Los Angeles County Sci. Ser., 1992, no. 36, pp. 51–64.Google Scholar
  2. Bellairs, A.D’A. and Jenkin, C.R., The skeleton of birds, in Biology and Comparative Physiology of Birds, Marshall, A.J., Ed., New York: Academic Press, 1960, vol. 1, pp. 241–300.CrossRefGoogle Scholar
  3. Carpenter, K., Eggs, Nests, and Baby Dinosaurs, Bloomington: Indian University Press, 1999.Google Scholar
  4. Chatterjee, S., The Rise of Birds, Baltimore: Johns Hopkins University Press, 1997.Google Scholar
  5. Clarke, J.A. and Norell, M.A., The morphology and phylogenetic position of Apsaravis ukhaana from the Late Cretaceous of Mongolia, Am. Mus. Novitates, 2002, no. 3387, pp. 1–46.Google Scholar
  6. Clarke, J.A. and Norell, M.A., New avialan remains and a review of the known avifauna from the Late Cretaceous Nemegt Formation of Mongolia, Am. Mus. Novitates, 2004, no. 3447, pp. 1–12.Google Scholar
  7. Clarke, J.A., Zhou, Z., and Zhang, F., Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui, J. Anat., 2006, vol. 208, pp. 287–308.CrossRefGoogle Scholar
  8. Chiappe, L.M., Late Cretaceous birds of southern South America: anatomy and systematics of Enantiornithes and Patagopteryx deferariisi, Munch. Geowissensch. Abhundl., 1996, vol. 30, pp. 203–244.Google Scholar
  9. Chiappe, L.M., The Chinese early bird Confuciusornis and the paraphyletic status of “Sauriurae”, J. Vertebr. Paleontol., 1997, vol. 17, no. 3, pp. 37A.Google Scholar
  10. Chiappe, L.M., Late Cretaceous birds of southern South America: anatomy and systematics of Enantiornithes and Patagopteryx deferariisi, Munch. Geowissensch. Abhundl., 1996, vol. 30, pp. 203–244.Google Scholar
  11. Chiappe, L.M., Glorified Dinosaurs, Sydney: University of New South Wales, 2007.Google Scholar
  12. Chiappe, L.M., Norell, M., and Clark, J., A new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi Desert, Am. Mus. Novitates, 2001, no. 3346, pp. 1–15.Google Scholar
  13. Chiappe, L.M. and Walker, C.A., Skeletal morphology and systematics of the Cretaceous Enantiornithes (Ornithothoraces: Enantiornithes), in Mesozoic Birds, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley: University of California Press, 2002, pp. 240–280.Google Scholar
  14. Cracraft, J., The origin and early diversification of birds, Paleobiol., 1986, vol. 12, pp. 383–399.Google Scholar
  15. Elzanowski, A., Preliminary note on the palaeognathous bird from the Upper Cretaceous of Mongolia, Palaeontol. Polon., 1974, no. 30, pp. 103–109.Google Scholar
  16. Elzanowski, A., Palaeognathous bird from the Cretaceous of Central Asia, Nature, 1976, vol. 264, no. 5581, pp. 51–53.CrossRefGoogle Scholar
  17. Elzanowski, A., Skulls of Gobipteryx (Aves) from the Upper Cretaceous of Mongolia, Palaeontol. Polon., 1977, no. 37, pp. 153–165.Google Scholar
  18. Elzanowski, A., Embryonic bird from the Late Cretaceous of Mongolia, Palaeontol. Polon., 1981, no. 42, pp. 147–179.Google Scholar
  19. Elzanowski, A., The evolution of parental care in birds with reference to fossil embryos, Acta XVIII Int. Ornithol. Congr., 1985, vol. 1, pp. 178–183.Google Scholar
  20. Elzanowski, A., Cretaceous birds and avian phylogeny, Cour. Forsch. Senck., 1995, vol. 181, pp. 37–53.Google Scholar
  21. Gradzinski, R. and Jerzykiewicz, T., Sedimentation in Barun Goyot Formation, Palaeontol. Polon., 1974, no. 30, pp. 111–146.Google Scholar
  22. Horner, J.R. and Weishampel D.B., A comparative embryological study of two ornithischian dinosaurs, Nature, 1988, vol. 332, pp. 256–257.CrossRefGoogle Scholar
  23. Hou, L., Zhou, Z., Martin, L.D., and Feduccia, A., A beaked bird from the Jurassic of China, Nature, 1995, vol. 377, pp. 616–618.CrossRefGoogle Scholar
  24. Hou, L., Martin, L.D., Zhou, Z., and Feduccia, A., Early adaptive radiation of birds: evidence from fossils from northeastern China, Science, 1996, vol. 274, pp. 1164–1167.CrossRefGoogle Scholar
  25. Hou, L., Martin, L.D., Zhou, Z., and Feduccia, A., Archaeopteryx to opposite birds-missing link from the Mesozoic of China, Vertebr. PalAsiat., 1999, vol. 37, pp. 88–95.Google Scholar
  26. Kielan-Jaworowska, Z. and Barsbold, R., Narrative of the Polish-Mongolian paleontological expeditions 1967–1971, Palaeontol. Polon., 1972, no. 27, pp. 5–16.Google Scholar
  27. Kurochkin, E.N., A new enantiornithid of the Mongolian Late Cretaceous, and a general appraisal of the infraclass Enantiornithes (Aves), Paleontol. Inst. Russian Acad. Set, Spec. Issue, Moscow: Palaeontological Institute, 1996, pp. 1–55.Google Scholar
  28. Martin, L.D., The origin and early radiation of birds, in Perspectives in Ornithology, Brush, A.H. and Clark, G.A., Jr., Eds., Cambridge: Cambridge University Press, 1983, pp. 291–338.CrossRefGoogle Scholar
  29. Martin, L.D., The Enantiornithes: Terrestrial birds of the Cretaceous, Cour. Forsch. Senck., 1995, vol. 181, pp. 23–36.Google Scholar
  30. Mikhailov, K.E., Classification of fossil eggshells of amniotic vertebrates, Acta Palaeontol. Polon., 1991, vol. 36, pp. 193–238.Google Scholar
  31. Mikhailov, K.E., The microstructure of avian and dinosaurian eggshell: phylogenetic implications, in Papers in Avian Paleontology, Honoring Pierce Brodkorb, Campbell, K.E., Jr. and Campbell, K.E., Ed., Natur. Hist. Mus. Los Angeles County Sci. Ser., 1992, no. 36, pp. 361–373.Google Scholar
  32. Mikhailov, K.E., Eggs of birds in the Cretaceous of Mongolia, Paleontol. Zhurn., 1996, vol. 30, no. 1, pp. 114–116.Google Scholar
  33. Mikhailov, K.E., Fossil and Recent Eggshells in amniotic vertebrates: fine structure, comparative morphology and classification, Special Papers Paleontol., 1997a, no. 56, p. 80.Google Scholar
  34. Mikhailov, K.E., Avian eggshells: an atlas of scanning electron micrograph, Br. Ornithol. Club, Occasional Publ., 1997b, no. 3, p. 88.Google Scholar
  35. Mikhailov, K.E., Sabath, K., and Kurzanov, S.M., Eggs and nests from the Cretaceous of Mongolia, in Dinosaur Eggs and Babies, Carpenter, K., Hirsch, K.F., and Horner, J., Eds., Cambridge: Cambridge University Press, 1994, pp. 88–115.Google Scholar
  36. Novacek, M., Dinosaurs of the Flaming Cliff, New York: Doubleday, 1996.Google Scholar
  37. Sabath, K., Upper Cretaceous amniotic eggs from the Gobi Desert, Acta Palaeontol. Polon., 1991, vol. 36, pp. 151–192.Google Scholar
  38. Sanz, J.L. and Buscalioni, A.D., A new bird from the Early Cretaceous of Las Hoyas, Spain, and the early radiation of birds, Palaeontol., 1992, vol. 35, pp. 829–845.Google Scholar
  39. Sanz, J.L., Chiappe, L.M., Perez-Moreno, B.P., Buscaloni, A.D., Moratalla, J.J., Ortega, F., and Poyato-Aroza, F.J., An early Cretaceous bird from Spain and its implications for the evolution of avian flight, Nature, 1996, vol. 383, pp. 442–445.CrossRefGoogle Scholar
  40. Shuvalov, V.F., The lake bassins of the arid and humid regions of Mongolia in the Late Mesozoic, in Mezozoiskie Ozernie Basseiny Mongolii, Martinson, G.G., Ed., Leningrad: Nauka, 1985, pp. 39–61.Google Scholar
  41. Sochava, A.V., Dinosaur egg from the Upper Cretaceous of the Gobi Desert, Paleontol. Zhurn., 1969, no. 4, pp. 517–527.Google Scholar
  42. Starck, J.M., Zeitmuster der Ontogenesen bei nestflüchttenden und nesthockenden Vögeln, Cour. Forsch. Senck., 1989, vol. 114, pp. 1–319.Google Scholar
  43. Starck, J.M., Evolution of avian ontogenies, in Current Ornithology, Power, D.M., Ed., New York: Plenum Press, 1993, vol. 10, pp. 275–366.CrossRefGoogle Scholar
  44. Starck, J.M. and Sutter, E., Patterns of growth in megapodes: prolonged incubation permits superprecocial chicks, J. Ornithol., 1994, vol. 135, pp. 85.Google Scholar
  45. Walker, C.A., New class of birds from the Cretaceous of South America, Nature, 1981, vol. 292, pp. 51–53.CrossRefGoogle Scholar
  46. Xu, X., You, H., Du, K., and Han, F., An Archaeopteryx-like theropod from China and the origin of Avialae, Nature, 2011, vol. 475, pp. 465–470.CrossRefGoogle Scholar
  47. Zhang, F. and Zhou, Z., A primitive enantiornithine bird and the origin of feathers, Science, 2000, vol. 290, pp. 1955–1959.CrossRefGoogle Scholar
  48. Zhang, F., Zhou, Z., Hou, I.l, and Gu, G.l, Early diversification of birds: evidence from anew opposite bird, Chin. Sci. Bull., 2001, vol. 46, pp. 945–949.CrossRefGoogle Scholar
  49. Zhou, Z. and Zhang, F., A beaked basal ornithurine bird (Aves, Ornithurae) from the Lower Cretaceous of China, Zool. Scr., 2006, vol. 35, pp. 363–373.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. N. Kurochkin
    • 1
  • S. Chatterjee
    • 2
  • K. E. Mikhailov
    • 1
  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Museum of Texas Tech UniversityLubbockUSA

Personalised recommendations