Natural selection in brain evolution of early hominids


Directional effect of natural selection on the arrangement of brain of anthropoids and man is reviewed. It is demonstrated that the evolution of the human nervous system is an integrated result of several multidirectional processes. At the early stages of the evolution of primates, the general biological principles of survival of the fittest, i.e., natural selection of the most adapted variants of the brain structure prevailed. During the period of hominid specialization, natural selection led to the formation of the neocortical control of voluntary movements, memory, and mental associations. At later stages of human morphological evolution, biological mechanisms of natural selection of the brain arrangement were replaced by social mechanisms. This process initiated hominid migrations and the growth of the brain size and individual variability in human ancestors. A model of cerebral sorting is proposed to explain the mechanisms of multidirectional selection leading to an increase in brain size of early hominids.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. M. Allman, “Evolution of Neocortex,” in: Cerebral Cortex, Ed. by E. G. Jones and A. Peters (Plenum Press, New York, 1990), Vol. 8A, pp. 269–283.

    Google Scholar 

  2. 2.

    K. Brodmann, Vergleichende Localisationslehre der Grosshirnrinde (Johann Amdrosius Barth, Leipzig, 1925).

    Google Scholar 

  3. 3.

    A. P. Buzhilova, Homo sapiens: Patient’s Card (Moscow, Yazyki Slavyan. Kul’t., 2005) [in Russian].

    Google Scholar 

  4. 4.

    A. W. Campbell, Histological Studies on the Localization of Cerebral Function (Cambridge, 1905).

  5. 5.

    A. Dohrn, Der ursprung der Wirbeltiere und das Prinzip des Functionswechsel (Vogel, Leipzig, 1875).

    Google Scholar 

  6. 6.

    L. Dollo, “Les lois de l’evolution,” Bull. Soc. Belg. Geol. Bruxelles 7, 164–166 (1893).

    Google Scholar 

  7. 7.

    I. N. Filimonoff, “Uber die Variabiliant der Grosshirnrindenstruktur. Mit. I. Allgemeine Betrachtungen,” J. Psychol. Neurol. 42(3–4), 210–230 (1931).

    Google Scholar 

  8. 8.

    I. N. Filimonoff, “Uber die Variabiliant der Grosshirnrindenstruktur. Mit. II. Regio Occipitalis beim erwachsenen,” J. Psychol. Neurol. 44(1–2), 1–96 (1932).

    Google Scholar 

  9. 9.

    I. N. Filimonoff, “Uber die Variabiliant der Grosshirnrindenstruktur. Mit. III. Regio occipitalis bei hoheren und niederen Affen,” J. Psychol. Neurol. 45(2–3), 69–137 (1933).

    Google Scholar 

  10. 10.

    S. I. Franz, “New Phrenology,” Science 35, 321–328 (1912).

    Article  Google Scholar 

  11. 11.

    S. I. Franz and K. S. Lashley, “The Retention of Habits by the Rat after Destruction of the Frontal Portion of the Cerebrum,” Psychobiology 1, 3–18 (1917).

    Article  Google Scholar 

  12. 12.

    R. L. Holloway, “The Failure of the Gyrification Index (GI) to Account for Volumetric Reorganization in the Evolution of the Human Brain,” J. Hum. Evol. 22, 163–170 (1992).

    Article  Google Scholar 

  13. 13.

    R. L. Holloway and M. C. DeLaCoste-Larymondie, “Brain Endocast Asymmetry in Pongids and Hominids: Some Preliminary Findings on the Paleontology of Cerebral Dominance,” Am. J. Phys. Anthropol. 58, 101–110 (1982).

    Article  Google Scholar 

  14. 14.

    R. L. Holloway, D. C. Broadfield, and M. S. Yuan, “Morphology and Histology of the Chimpanse Primary Visual Striate Cortex Indicate that Brain Organisation Predated Brain Expansion in Early Hominid Evolution,” Anat. Rec. 22, 249–257 (2003).

    Google Scholar 

  15. 15.

    R. L. Holloway, D. C. Broadfield, and M. S. Yuan, Brain Endocast-the Paleoneurological Evidence (John Wiley and, Inc., Hoboken-New Jersey, 2004).

    Google Scholar 

  16. 16.

    N. Kleinenberg, “Die Entstehung des Annelids aus der Larvae von Lopadorhynchus,” Zschr. F. Wiss. Zool. 44, 1–227 (1886).

    Google Scholar 

  17. 17.

    K. S. Lashley, Brain Mechanisms and Intelligense (Univ. Chicago Press, Chicago, 1929).

    Google Scholar 

  18. 18.

    K. S. Lashley and G. Clark, “The Cytoarchitecture of the Cerebral Cortex of Ateles: A Critical Examination with Architectonic Studies,” J. Compar. Neurol. 85, 223–305 (1946).

    Article  Google Scholar 

  19. 19.

    S. V. Saveliev, Stereoscopic Atlas of Human Brain (Area-17, Moscow, 1996) [in Russian].

    Google Scholar 

  20. 20.

    S. V. Saveliev, Atlas of Human Brain (VEDI, Moscow, 2005a) [in Russian].

    Google Scholar 

  21. 21.

    S. V. Saveliev, The Origin of Brain (VEDI, Moscow, 2005b) [in Russian].

    Google Scholar 

  22. 22.

    S. V. Saveliev, “Neurobiological Approaches in Vertebrate Paleontology,” Paleontol. Zh., No. 6, 3–10 (2008) [Paleontol. J. 42(6), 573–580 (2008)].

  23. 23.

    S. V. Saveliev, “Principle of Integrity in the Evolution of Associative Centers of the Brain of Vertebrates,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 2, 1–10 (2010).

  24. 24.

    Yu. G. Shevchenko “Lower Parietal Region in Apes,” Tr. Inst. Mozga TsIK SSSR, No. 2, 155–202 (1936).

  25. 25.

    Yu. G. Shevchenko Evolution of Brain Cortex in Primates and Man (Mosk. Gos. Univ., Moscow, 1971) [in Russian].

    Google Scholar 

  26. 26.

    I. A. Stankevich and Yu. G. Shevchenko, “Structural Variability of the Cerebral Cortex of Brain: Lower Parietal Region in Adult Man,” Tr. Inst. Mozga TsIK SSSR, No. 1, 119–174 (1935).

Download references

Author information



Corresponding author

Correspondence to S. V. Saveliev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saveliev, S.V. Natural selection in brain evolution of early hominids. Paleontol. J. 44, 1589–1597 (2010).

Download citation


  • natural selection
  • brain
  • evolution
  • early hominids