Advertisement

Paleontological Journal

, Volume 44, Issue 7, pp 851–859 | Cite as

High-temperature deep-subsurface microbial communities as a possible equivalent of ancient ecosystems

  • E. A. Bonch-Osmolovskaya
Article

Abstract

Microbiological, molecular biological, and radioisotopic studies suggest that active and complex microbial communities exist in the deep layers of the subsurface biosphere. This review discusses only one group of such communities, i.e., those developing at high (above 60°C temperatures). Oil wells, subsurface water reservoirs (e.g., the Great Artesian Basin in Australia), deep mines (in South Africa), and high-temperature horizons below the seafloor in the areas of underwater volcanic activity contain the best-studied high-temperature subsurface ecosystems. These microbial communities differ considerably from one another in biodiversity, initial energy substrate, and major microbiological processes. However, before they can be considered as equivalents of the Earth’s primordial ecosystems, it is necessary to demonstrate that they are energetically independent of the modern biosphere.

Keywords

Microbial Community Archaea Paleontological Journal Great Artesian Basin Thermophilic Prokaryote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Amend and E. L. Shock, “Energetics of Overall Metabolic Reactions of Thermophilic and Hyperthermophilic Archaea and Bacteria,” FEMS Microbiol. Revs. 25, 175–243 (2001).CrossRefGoogle Scholar
  2. 2.
    K. T. Andrews and B. K. C. Patel, “Fervidobacterium gondwanense sp. nov., a New Thermophilic Anaerobic Bacterium Isolated from Nonvolcanically Heated Geothermal Waters of the Great Artesian Basin of Australia,” Int. J. Syst. Bacteriol. 46, 265–269 (1996).CrossRefGoogle Scholar
  3. 3.
    J. Beeder, T. Torsvik, and T. Lien, “Thermodesulforhabdus norvegicus gen. nov., sp. nov., a Novel Thermophilic Sulfate-Reducing Bacterium from Oil Field Water,” Arch. Microbiol. 164, 331–336 (1995).CrossRefGoogle Scholar
  4. 4.
    E. A. Bonch-Osmolovskaya, “Studies of Thermophilic Microorganisms at the Institute of Microbiology, Russian Academy of Sciences,” Mikrobiologiya 73(5) 644–658 (2004) [Microbiology 73 (5), 551–564 (2004)].Google Scholar
  5. 5.
    E. A. Bonch-Osmolovskaya and M. L. Miroshnichenko, “The Effect of Molecular Hydrogen and Elemental Sulfur on the Metabolism of Hyperthermophilic Archaea of the Genus Thermococcus,” Mikrobiologiya 63, 777–782 (1994).Google Scholar
  6. 6.
    E. A. Bonch-Osmolovskaya, M. L. Miroshnichenko, A. I. Slobodkin, et al., “Biodiversity of Anaerobic Lithotrophic Prokaryotes in Subaerial Hydrothermal Springs of the Kamchatka Peninsula,” Mikrobiologiya 68, 398–406 (1999).Google Scholar
  7. 7.
    E. A. Bonch-Osmolovskaya, M. L. Miroshnichenko, A. V. Lebedinsky, et al., “Radioisotopic, Culture-Based, and Oligonucleotide Microchip Analyses of Thermophilic Microbial Communities in a Continental High-Temperature Petroleum Reservoir,” Appl. Environ. Microbiol. 69, 6143–6151 (2003).CrossRefGoogle Scholar
  8. 8.
    E. A. Bonch-Osmolovskaya, M. L. Miroshnichenko, T. G. Sokolova, and A. I. Slobodkin, “Thermophilic Microbial Communities: New Physiologic Groups, New Habitats: Proceedings of the Institute of Microbiology, Issue 12 (Nauka, Moscow, 2004), pp. 29–40 [in Russian].Google Scholar
  9. 9.
    S. Daumas, O. Goeneche, and A. Bianchi, “Activités metaboliques des bactéries des eaux géothermales du Dogger et du Trias du Bassin Parisien,” C. R. Acad. Sci. Paris, Sér. 3, 301, 295–297 (1986).Google Scholar
  10. 10.
    J. W. Deming and J. A. Baross, “Deep-Sea Smokers: Windows to a Subsurface Biosphere?,” Geochim. Cosmochim. Acta 57, 3219–3230 (1993).CrossRefGoogle Scholar
  11. 11.
    H. W. Jannasch and M. J. Mottl, “Geomicrobiology of Deep-Sea Hydrothermal Vents,” Science 229, 717–725 (1985).CrossRefGoogle Scholar
  12. 12.
    D. M. Karl, The Microbiology of Deep-Sea Hydrothermal Vents (CRC Press, Boca Raton, 1995).Google Scholar
  13. 13.
    L.-H. Lin, P.-Z. Wamg, D. Rumble, et al., “Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome”, Science 314, 479 (2006).CrossRefGoogle Scholar
  14. 14.
    S. L’Haridon, A.-L. Reysenbach, P. D. Glénat, et al., “Hot Subterranean Biosphere in a Continental Oil Reservoir,” Nature 337, 223–224 (1995).CrossRefGoogle Scholar
  15. 15.
    S. L’Haridon, M. L. Miroshnichenko, H. Hippe, et al., “Thermosipho geolei sp. nov., a Thermophilic Bacterium Isolated from a Continental Petroleum Reservoir in Western Siberia,” Intern. J. System. Evol. Microbiol. 52, 1327–1334 (2002a).Google Scholar
  16. 16.
    S. L’Haridon, M. L. Miroshnichenko, H. Hippe, et al., “Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., Two Thermophilic Bacteria Isolated from a Continental Petroleum Reservoir in Western Siberia,” Int. J. Syst. Evol. Microbiol. 52, 1715–1722 (2002b).CrossRefGoogle Scholar
  17. 17.
    M. L. Miroshnichenko, H. Hippe, E. Stackebrandt, et al., “Isolation of Hyperthermophilic Archaea in Western Siberia High Temperature Oil Reservoir and Characterization of Thermococcus sibiricus sp. nov.,” Extremophiles 5, 85–91 (2001).CrossRefGoogle Scholar
  18. 18.
    B. B. Namsaraev, E. A. Bonch-Osmolovskaya, M. L. Miroshnichenko, et al., “Microbiological Processes of the Carbon Cycle in Shallow-Water Hydrothermal Springs on the Southwestern Margins of the Pacific Ocean,” Mikrobiologiya 63, 100–111 (1994).Google Scholar
  19. 19.
    T. N. Nazina, Y.-F. Xue, X.-Y. Wang, et al., “Microorganisms of the High-Temperature Liaohe Oil Field of China and Their Potential for MEOR,” Res. Environm. Biotechnol. 3, 149–160 (2000a).Google Scholar
  20. 20.
    T. N. Nazina, Y-F. Xue, X-Y. Wang, et al., “Diversity or Activity of Microorganisms in the Daqing Oil Field of China and Their Potential for Biotechnological Applications,” Res. Environm. Biotechnol. 3, 161–172 (2000b).Google Scholar
  21. 21.
    T. N. Nazina, N. M. Shestakova, Grigor’yan A.A., et al., “Phylogenetic Diversity and Activity of Anaerobic Microorganisms of High-Temperature Horizons of the Dagang Oil Field (P. R. China),” Mikrobiologiya 75(1), 1–12 (2006) [Microbiology 75 (1), 55–65 (2006)].Google Scholar
  22. 22.
    R. K. Nielsen and T. Torsvik, “Methanococcus thermolithotrophicus Isolated from North Sea Oil Field Reservoir Water,” Appl. Environm. Microbiol. 62, 728–731 (1996).Google Scholar
  23. 23.
    K. Nielsen and K. Takai, “Hydrogen-Driven Subsurface Lithoautotrophic Microbial Ecosystems (SliMEs): Do They Exist and Why Should We Care?,” Trends in Microbiol. 13, 405–410 (2005).CrossRefGoogle Scholar
  24. 24.
    V. J. Orphan, L. T. Taylor, D. Hafenbradl, and E. F. Delong, “Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs,” Appl. Environm. Microbiol. 66, 700–711 (2000).CrossRefGoogle Scholar
  25. 25.
    R. J. Parkes, B. A. Cragg, S. J. Bale, et al., “Deep Bacterial Biosphere in Pacific Ocean Sediments,” Nature 371, 410–413 (1994).CrossRefGoogle Scholar
  26. 26.
    R. J. Parkes, B. A. Cragg, and P. Wellsbury, “Recent Studies of Bacterial Populations and Processes in Subseafloor Sediments: A Review,” Hydrogeology J. 8, 11–28 (2000).CrossRefGoogle Scholar
  27. 27.
    N. A. Pimenov and E. A. Bonch-Osmolovskaya, “In Situ Activity Studies in Thermal Environments,” in Methods in Microbiology, Ed. by F.A. Rainey and A. Oren (Elsevier Acad. Press, 2006), pp. 29–54.Google Scholar
  28. 28.
    G. Ravot, M. Magot, M.-L. Fardeau, et al., “Thermotoga elfii sp. nov., a Novel Thermophilic Bacterium from an African Oil-Producing Well,” Int. J. Syst. Bacteriol. 45, 308–314 (1995).CrossRefGoogle Scholar
  29. 29.
    G. N. Rees, G. S. Grassia, A. J. Sheehy, et al., “Desulfacinum infernum gen. nov., sp. nov., a Thermophilic Sulfate-Reducing Bacterium from a Petroleum Reservoir,” Int. J. Syst. Bacteriol. 45, 85–89 (1995).CrossRefGoogle Scholar
  30. 30.
    J. T. Rosnes, T. Torsvik, and T. Lien, “Spore-Forming Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters,” Appl. Environm. Microbiol. 57, 2302–2307 (1994).Google Scholar
  31. 31.
    E. G. Roussel, M.-A. Cambon-Bonavita, J. Querellou, et al., “Extending the Subsea-Floor Biosphere,” Science 320, 5879–5882 (2008).CrossRefGoogle Scholar
  32. 32.
    N. M. Shestakova, “Phylogenetic Diversity and Activity of Microorganisms in High-Temperature Petroleum Reservoirs,” Candidate’s Dissertation in Biology (Moscow, 2007).Google Scholar
  33. 33.
    T. V. Slepova, I. I. Rusanov, T. G. Sokolova, et al., “Radioisotopic Tracing of Carbon Monoxide Conversion by Anaerobic Thermophilic Prokaryotes,” Mikrobiologiya 76(5), 594–601 (2007) [Microbiology 76 (5), 523–529 (2007)].Google Scholar
  34. 34.
    A. I. Slobodkin, D. G. Zavarzina, T. G. Sokolova, and E. A. Bonch-Osmolovskaya, “Dissimilatory Reduction of Inorganic Electron Acceptors by Thermophilic Anaerobic Prokaryotes,” Mikrobiologiya 68, 600–622 (1999) [Microbiology 68, 522–542 (1999)].Google Scholar
  35. 35.
    T. Sokolova, A.-M. Henstra, J. Sipma, et al., “Diversity and Ecophysiological Features of Thermophilic Carboxydotrophic Anaerobes,” FEMS Microbiol. Ecol. 68, 131–141 (2009).CrossRefGoogle Scholar
  36. 36.
    J. R. Spear, J. J. Walker, T. M. McCollom, and N. R. Pace, “Hydrogen and Bioenergetics in the Yellowstone Geothermal Ecosystem,” Proc. Natl. Acad. Sci. USA 102, 2555–2560 (2005).CrossRefGoogle Scholar
  37. 37.
    K. O. Stetter, R. Huber, E. Bloechl, et al., “Hyperthermophilic Archaea are Thriving in Deep North Sea and Alaskan Oil Reservoirs,” Nature 365, 743–745 (1993).CrossRefGoogle Scholar
  38. 38.
    T. O. Stevens and J. P. McKinley, “Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers,” Science 270, 450–455 (1995).CrossRefGoogle Scholar
  39. 39.
    Y. Takahata, M. Nishijima, T. Hoaki, and T. Maruyama, “Distribution and Physiological Characteristics of Hyperthermophiles in the Kubiki Oil Reservoir in Niigata, Japan,” Appl. Environm. Microbiol. 66, 73–79 (2000).CrossRefGoogle Scholar
  40. 40.
    K. Takai and K. Horikoshi, “Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments,” Genetics 152, 1285–1297 (1999).Google Scholar
  41. 41.
    K. Takai, D. P. Moser, M. DeFlaun, et al., “Archaeal Diversity in Waters from Deep South African Gold Mine,” Appl. Environm. Microbiol. 67, 5754–5760 (2001).Google Scholar
  42. 42.
    K. Takai, T. Gamo, U. Tsunogai, et al., “Geochemical and Microbiological Evidence for a Hydrogen-Based Subsurface Lithoautotrophic Microbial Ecosystem (HyperSLiME) beneath an Active Deep-Sea Hydrothermal Fluid,” Extremophiles 8, 268–282 (2004).CrossRefGoogle Scholar
  43. 43.
    A. Teske, “The Deep Subsurface Biosphere is Alive and Well,” Trends in Microbiol. 13, 402–404 (2005).CrossRefGoogle Scholar
  44. 44.
    P. Wellsbury, I. Mather, and R. J. Parkes, “Geomicrobiology of Deep, Low Organic Carbon Sediments in the Woodlark Basin, Pacific Ocean,” FEMS Microbiol. Ecol. 42, 59–70 (2002).CrossRefGoogle Scholar
  45. 45.
    W. B. Whitman, D. C. Coleman, and J. W. Wiebe, “Prokaryotes: The Unseen Majority,” Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).CrossRefGoogle Scholar
  46. 46.
    G. A. Zavarzin, E. A. Bonch-Osmolovskaya, and V. A. Svetlichnyi, “Extreme Thermophiles in Hydrotherms,” in Recent Advances in Microbial Ecology, Ed. by T. Hattori (Japan Sci. Soc. Press, 1989), pp. 33–37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations