Skip to main content
Log in

Can a cell be assembled from its constituents?

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

To date, available are a provisional list of the minimal set of genes required for the functioning and multiplication of a living cell under maximally favorable conditions, methods for the complete chemical synthesis of the minimal genome, and cell-free systems for carrying out all the biochemical reactions comprising the genome replication and expression. The most serious problem that remains on the way to creating an artificial living cell is the need to meet two apparently incompatible requirements: separation of the biochemical reactions from the environment, and exchange between the environment and the cell. A solution to this problem can be provided by molecular colonies (other names: nanocolonies, polonies), which form when RNA or DNA is replicated in a solid medium having pores of a nanometer size. Molecular colonies might also have served as a pre-cellular form of compartmentalization in the RNA World.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Biebricher, M. Eigen, and R. Luce, “Template-Free RNA Synthesis by Qβ Replicase,” Nature 321, 89–91 (1986).

    Article  Google Scholar 

  2. E. Biondi, S. Branciamore, M. C. Maurel, and E. Gallori, “Montmorillonite Protection of an UV-Irradiated Hairpin Ribozyme: Evolution of the RNA World in a Mineral Environment,” BMC Evol. Biol. 7, S2 (2007).

    Article  Google Scholar 

  3. D. Brown and L. Gold, “Selection and Characterization of RNAs Replicated by Qβ Replicase,” Biochemistry 34, 14775–14782 (1995).

    Article  Google Scholar 

  4. A. B. Chetverin, “Bacteriophage Qβ As an Object of Molecular Biology,” Uspekhi Biol. Khim. 38, 3–75 (1998).

    Google Scholar 

  5. A. B. Chetverin and A. S. Spirin, “Replicable RNA Vectors: Prospects for Cell-Free Gene Amplification, Expression and Cloning,” Prog. Nucleic Acid Res. Mol. Biol. 51, 225–270 (1995).

    Article  Google Scholar 

  6. A. B. Chetverin and H. V. Chetverina, “Method for Amplification of Nucleic Acids in Solid Media,” U.S. Patent No. 5,616,478 (1997).

  7. A. B. Chetverin and H. V. Chetverina, “Molecular Colony Technique: A New Tool for Biomedical Research and Clinical Practice,” Prog. Nucleic Acid Res. Mol. Biol. 82, 219–255 (2008).

    Article  Google Scholar 

  8. H. V. Chetverina and A. B. Chetverin, “Nanocolonies: Detection, Cloning, and Analysis of Individual Molecules,” Uspekhi Biol. Khim. 48, 3–64 (2008).

    Google Scholar 

  9. H. V. Chetverina and A. B. Chetverin, “Cloning of RNA Molecules In Vitro,” Nucleic Acids Res. 21, 2349–2353 (1993).

    Article  Google Scholar 

  10. A. B. Chetverin, H. V. Chetverina, A. A. Demidenko, and V. I. Ugarov, “Nonhomologous RNA Recombination in a Cell-Free System: Evidence for a Transesterification Mechanism Guided by Secondary Structure,” Cell 88, 503–513 (1997).

    Article  Google Scholar 

  11. A. B. Chetverin, H. V. Chetverina, and A. V. Munishkin, “On the Nature of Spontaneous RNA Synthesis by Qβ Replicase,” J. Mol. Biol. 222, 3–9 (1991).

    Article  Google Scholar 

  12. A. B. Chetverin, T. R. Samatov, and H. V. Chetverina, “Gene Cloning and Expression in Molecular Colonies,” in Cell-Free Protein Synthesis: Methods and Protocols, Ed. by A. S. Spirin and J. R. Swartz (Wiley-VCH, Weinheim, 2008), pp. 191–206.

    Google Scholar 

  13. H. V. Chetverina, A. A. Demidenko, V. I. Ugarov, and A. B. Chetverin, “Spontaneous Rearrangements in RNA Sequences,” FEBS Lett. 450, 89–94 (1999).

    Article  Google Scholar 

  14. H. V. Chetverina, T. R. Samatov, V. I. Ugarov, and A. B. Chetverin, “Molecular Colony Diagnostics: Detection and Quantitation of Viral Nucleic Acids by In-Gel PCR,” BioTechniques 33, 150–156 (2002).

    Google Scholar 

  15. N. I. Yeremin, Nonmetallic Mineral Resources (Mosk. Gos. Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  16. J. P. Ferris, G. Ertem, and V. K. Agarwal, “The Adsorption of Nucleotides and Polynucleotides on Montmorillonite Clay,” Orig. Life Evol. Biosph. 19, 153–164 (1989).

    Article  Google Scholar 

  17. J. P. Ferris, A. R. Hill, R. Liu, and L. E. Orgel, “Synthesis of Long Prebiotic Oligomers on Mineral Surfaces,” Nature 381, 59–61 (1996).

    Article  Google Scholar 

  18. A. C. Forster and G. M. Church, “Towards Synthesis of a Minimal Cell,” Mol. Syst. Biol. 2, 45 (2006).

    Article  Google Scholar 

  19. A. C. Forster and G. M. Church, “Synthetic Biology Projects In Vitro,” Genome Res. 17, 1–6 (2007).

    Article  Google Scholar 

  20. M. Franchi, J. P. Ferris, and E. Gallori, “Cations as Mediators of the Adsorption of Nucleic Acids on Clay Surfaces in Prebiotic Environments,” Orig. Life Evol. Biosph. 33, 1–16 (2003).

    Article  Google Scholar 

  21. C. M. Fraser, J. D. Gocayne, O. White, et al., “The Minimal Gene Complement of Mycoplasma genitalium,” Science 270, 397–403 (1995).

    Article  Google Scholar 

  22. D. G. Gibson, G. A. Benders, C. Andrews-Pfannkoch, et al., “Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome,” Science 319, 1215–1220 (2008).

    Article  Google Scholar 

  23. W. Gilbert, “Origin of Life: The RNA World,” Nature 319, 618 (1986).

    Article  Google Scholar 

  24. W. Gilbert and S. J. de Souza, “Intron and the RNA World,” in The RNA World. Cold Spring Harbor (CSHL Press, New York, 1999), pp. 221–231.

    Google Scholar 

  25. S. J. Giovannoni, H. J. Tripp, S. Givan, et al., “Genome Streamlining in a Cosmopolitan Oceanic Bacterium,” Science 309, 1242–1245 (2005).

    Article  Google Scholar 

  26. J. I. Glass, N. Assad-Garcia, N. Alperovich, et al., “Essential Genes of a Minimal Bacterium,” Proc. Natl. Acad. Sci. USA 103, 425–430 (2006).

    Article  Google Scholar 

  27. K. J. Hallock, D. K. Lee, and A. Ramamoorthy, “MSI-78, an Analogue of the Magainin Antimicrobial Peptides, Disrupts Lipid Bilayer Structure via Positive Curvature Strain,” Biophys. J. 84, 3052–3060 (2003).

    Article  Google Scholar 

  28. M. M. Hanczyc, S. M. Fujikawa, and J. W. Szostak, “Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division,” Science 302, 618–622 (2003).

    Article  Google Scholar 

  29. I. Haruna and S. Spiegelman, “Autocatalytic Synthesis of a Viral RNA In Vitro,” Science 150, 884–886 (1965).

    Article  Google Scholar 

  30. W. Huang and J. P. Ferris, “One-Step, Regioselective Synthesis of up to 50-Mers of RNA Oligomers by Montmorillonite Catalysis,” J. Am. Chem. Soc. 128, 8914–8919 (2006).

    Article  Google Scholar 

  31. P. C. Joshi, S. Pitsch, and J. P. Ferris, “Selectivity of Montmorillonite Catalyzed Prebiotic Reactions of D, L-Nucleotides,” Orig. Life Evol. Biosph. 37, 3–26 (2007).

    Article  Google Scholar 

  32. G. F. Joyce, “Forty Years of In Vitro Evolution,” Angew. Chem. Int. Ed. Engl. 46, 6420–6436 (2007).

    Article  Google Scholar 

  33. C. Lartigue, J. I. Glass, N. Alperovich, et al., “Genome Transplantation in Bacteria: Changing One Species to Another,” Science 317, 632–638 (2007).

    Article  Google Scholar 

  34. A. L. Lehninger, Biochemistry: Molecular Basis of Cell Structure and Function (Worth Publ. Inc., New York, 1970; Mir, Moscow, 1976).

    Google Scholar 

  35. S. S. Mansy, J. P. Schrum, M. Krishnamurthy, et al., “Template-Directed Synthesis of a Genetic Polymer in a Model Protocell,” Nature 454, 122–125 (2008).

    Article  Google Scholar 

  36. D. R. Mills, R. L. Peterson, and S. Spiegelman, “An Extracellular Darwinian Experiment with a Self-Duplicating Nucleic Acid Molecule,” Proc. Natl. Acad. Sci. USA 58, 217–224 (1967).

    Article  Google Scholar 

  37. I. Yu. Morozov, V. I. Ugarov, A. B. Chetverin, and A. S. Spirin, “Synergism in Replication and Translation of Messenger RNA in a Cell-Free System,” Proc. Natl. Acad. Sci. U.S.A 90, 9325–9329 (1993).

    Article  Google Scholar 

  38. A. R. Mushegian and E. V. Koonin, “A Minimal Gene Set for Cellular Life Derived by Comparison of Complete Bacterial Genomes,” Proc. Natl. Acad. Sci. USA 93, 10268–10273 (1996).

    Article  Google Scholar 

  39. A. Nakabachi, A. Yamashita, H. Toh, et al., “The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella,” Science 314, 267 (2006).

    Article  Google Scholar 

  40. T. Oberholzer, R. Wick, P. L. Luisi, and C. K. Biebricher, “Enzymatic RNA Replication in Self-Reproducing Vesicles: An Approach to a Minimal Cell,” Biochem. Biophys. Res. Commun. 207, 250–257 (1995).

    Article  Google Scholar 

  41. L. Pasteur, “Expériences relatives aux générations dites spontanées,” C. R. Acad. Sci. 50, 303–307 (1860).

    Google Scholar 

  42. F. Poulet, J. P. Bibring, J. F. Mustard, et al., “Phyllosilicates on Mars and Implications for Early Martian Climate,” Nature 438, 623–627 (2005).

    Article  Google Scholar 

  43. R. K. Saiki, S. Scharf, F. Faloona, et al., “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,” Science 230, 1350–1354 (1985).

    Article  Google Scholar 

  44. R. K. Saiki, D. H. Gelfand, S. Stoffel, et al., “Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase,” Science 239, 487–491 (1988).

    Article  Google Scholar 

  45. T. R. Samatov, H. V. Chetverina, and A. B. Chetverin, “Expressible Molecular Colonies,” Nucleic Acids Res. 33, 145 (2005).

    Article  Google Scholar 

  46. T. R. Samatov, H. V. Chetverina, and A. B. Chetverin, “Real-Time Monitoring of DNA Colonies Growing in a Polyacrylamide Gel,” Anal. Biochem. 356, 300–302 (2006).

    Article  Google Scholar 

  47. A. S. Spirin, “Omnipotent RNA,” FEBS Lett. 530, 4–8 (2002).

    Article  Google Scholar 

  48. A. S. Spirin, “RNA World and Its Evolution,” Molekul. Biol. 39, 550–556 (2005a).

    Google Scholar 

  49. A. S. Spirin, “Origin, Possible Forms of Being, and Size of the Primeval Organisms,” Paleontol. Zh., No. 4, 25–32 (2005b) [Paleontol. J. 39 (4), 364–371 (2005b)].

  50. M. Sumper and R. Luce, “Evidence for De Novo Production of Self-Replicating and Environmentally Adapted RNA Structures by Bacteriophage Qβ Replicase,” Proc. Natl. Acad. Sci USA 72, 162–166 (1975).

    Article  Google Scholar 

  51. J. W. Szostak, “Constrains on the Sizes of the Earliest Cells,” in Size Limits of Very Small Microorganisms. Proc. Workshop, Washington D.C. (Natl. Acad. Press, Washington D.C., 1999), pp. 120–125.

    Google Scholar 

  52. J. W. Szostak, D. P. Bartel, and P. L. Luisi, “Synthesizing Life,” Nature 409, 387–390 (2001).

    Article  Google Scholar 

  53. J. Tamames, R. Gil, A. Latorre, et al., “The Frontier between Cell and Organelle: Genome Analysis of Candidatus Carsonella ruddii,” BMC Evol. Biol. 7, 181 (2007).

    Article  Google Scholar 

  54. V. I. Ugarov and A. B. Chetverin, “Functional Circularity of Legitimate Qβ Replicase Templates,” J. Mol. Biol. 379, 414–427 (2008).

    Article  Google Scholar 

  55. Z. Wang and G. Wang, “APD: The Antimicrobial Peptide Database,” Nucleic Acids Res. 32, D590–D592 (2004).

    Article  Google Scholar 

  56. L. B. Williams, B. Canfield, K. M. Voglesonger, and J. R. Holloway, “Organic Molecules Formed in a ‘Primordial Womb’,” Geology 33, 913–916 (2005).

    Article  Google Scholar 

  57. D. Zhou, R. Zhang, R. Fang, et al., “Methylation Pattern Analysis Using High-Throughput Microarray of Solid-Phase Hyperbranched Rolling Circle Amplification Products,” Electrophoresis 29, 626–633 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Chetverin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetverin, A.B. Can a cell be assembled from its constituents?. Paleontol. J. 44, 715–727 (2010). https://doi.org/10.1134/S0031030110070026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030110070026

Keywords

Navigation