Development of the trophic structure of Vendian and Early Paleozoic marine communities

Abstract

Major trophic links are reconstructed for the Vendian and Early Paleozoic. A hypothesis of the predominant development of extracorporeal or skin digestion in Vendian multicellular consumers is substantiated. The main food sources were algal-bacterial films, finely dispersed debris falling from the photic zone in cold shallow seas lacking a thermocline and debris on the surface of the sediment. Symbiosis with phototrophic and chemotrophic bacteria was widespread. Pelagic filtration and filtration of the near-bottom finely dispersed organic matter (including bacteria), and debris-feeding appeared when internal digestion became widespread in the Cambrian. These were supplemented in the Ordovician by feeding on the live phyto- and zooplankton in the water column one meter above the bottom. Before the Ordovician, feeding on live plankton and more so active predation on larger multicellular animals was the exception rather than the rule. The role of active predators in the biota did not become more important until the end of the Silurian. Mass morphogenesis among occurred multicellular animals as the amount and diversity of nutritional and/or spatial resources rapidly increased, while before that the lack of these was a limiting factor.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. E. Babcock, “Trilobite Malformations and the Fossil Record of Behavioral Asymmetry,” J. Paleontol. 67(2), 217–229 (1993).

    Google Scholar 

  2. 2.

    L. E. Babcock and R. A. Robinson, “Preferences of Palaeozoic Predators,” Nature 337, 695–696 (1989).

    Article  Google Scholar 

  3. 3.

    R. K. Bambach, A. M. Bush, and D. H. Erwin, “Autecology and the Filling of Ecospace: Key Metazoan Radiations,” Palaeontology 50(Part 1), 1–22 (2007).

    Article  Google Scholar 

  4. 4.

    D. Bamford, “Epithelial Absorption In: Jangoux M. and J.M. Lawrence (eds.) Echinaterm Nutrition. A.A. Balkema, Ratterdam, 1966. P. 317–330.

    Google Scholar 

  5. 5.

    G. Behrendt and A. Ruthmann, “The Cytoskeleton of the Fiber Cells of Trichoplax adhaerens (Placozoa),” Zoomorphology 106, 123–130 (1986).

    Article  Google Scholar 

  6. 6.

    D. B. Blake, “Adaptive Zones of the Class Asteroidea (Echinodermata),” Bull. Mar. Sci. 46(3), 701–718 (1990).

    Google Scholar 

  7. 7.

    D. J. Bottjer and W. I. Ausich, “Phanerozoic Development of Tiering in Soft Substrate Suspension-Feeding Communities,” Paleobiology 12, 400–420 (1986).

    Google Scholar 

  8. 8.

    D. J. Bottjer and M. E. Clapham, “Evolutionary Paleocology of Ediacaran Benthic Marine Animals” in Neoproteozoic Geobiology and Paleobiology, Ed. by S. Xiao and A.J. Kaufman (Springer, 2006), 91–114.

  9. 9.

    D. E. Briggs, D. H. Erwin, and F. J. Collier, The Fossils of the Burgess Shale (Smithsonian Institution Press, Washington DC, 1994).

    Google Scholar 

  10. 10.

    N. J. Butterfield, “Plankton Ecology and the Proterozoic-Phanerozoic Transition,” Paleobiology 23, 247–262 (1997).

    Google Scholar 

  11. 11.

    N. J. Butterfield, “Ecology and Evolution of Cambrian Plankton”, in The Ecology of the Cambrian Radiation, Ed. by A.Yu. Zhuravlev and R. Riding (Columbia University Press, New York, 2001a), 200–216.

    Google Scholar 

  12. 12.

    N. J. Butterfield, “Cambrian Food Webs” in Palaebiology II, a Synthesis, Ed. by D.E.G. Briggs and P.R. Crowther (Blackwell Scietific, Oxford, 2001b), 40–43.

    Google Scholar 

  13. 13.

    N. J. Butterfield, “Macroevolution and Macroecology through Deep Time,” Palaeontology 50(Part 1), 41–55 (2007).

    Article  Google Scholar 

  14. 14.

    P. Cloud and M. F. Glaessner, “The Ediacarian Period and System: Metazoa Inherit the Earth,” Science 217(4562), 783–792 (1982).

    Article  Google Scholar 

  15. 15.

    M. L. Droser, S. Jensen, and J. G. Gehling, “Trace Fossils and Substrates of the Terminal Proterozoic-Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing,” Proc. Natl. Acad. Sci. USA. 99, 12572–12576 (2002b).

    Article  Google Scholar 

  16. 16.

    M. A. Fedonkin, “Cold Water Cradle of Animal Life,” Paleontol. J. 30(6), 669–673 (1996).

    Google Scholar 

  17. 17.

    M. A. Fedonkin, “Cold Outset of Animal Life,” Priroda, No. 9, 3–11 (2000).

  18. 18.

    M. A. Fedonkin, “The Origin of the Metazoa in the Light of the Proterozoic Fossil Record,” Paleontol. Res. 7(1), 9–41 (2003).

    Article  Google Scholar 

  19. 19.

    M. A. Fedonkin, A. Simonetta and A. Y. Ivantsov, New Data on Kimberella, the Vedndian Molusk-like Organism (White Sea Region, Russia): Palaeoecological and Evolutionary Implications in The Rise and Fall of the Ediacaran Biota (Geological Society Special Publication no. 286), Eds. by P. Vickers-Rich, P. Komarower, 157–179.

  20. 20.

    M. A. Fedonkin, Soft-Bodied Vendian Fauna and Its Place in the Evolution of Metazoa: Proceedings of the Paleontological Institute of the Academy of Sciences of the USSR, Vol. 226 (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  21. 21.

    N. S. Gaevskaya, “The Main Problems in Studying the Food Resources and Feeding Habits of Fishes in Terms of the Major Biological Problems of Fish Industry,” in Trophology of Aquatic Animals: Results and Problems (Nauka, Moscow, 1973), pp. 18–37 [in Russian].

    Google Scholar 

  22. 22.

    J. G. Gehling, “Earliest Known Echinoderm—A New Ediacaran Fossil from the Pound Subgroup of South Australia,” Alcheringa 11, 337–345 (1987).

    Article  Google Scholar 

  23. 23.

    M. F. Glaessner, The Dawn of Animal Life: A Biohistorical Study (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  24. 24.

    A. N. Golikov and O. A. Skarlato, “The Effect of Mussel Breeding in the White Sea on the Benthos in the Adjacent Waters,” Biol. Morya, No. 4, 68–73 (1979).

  25. 25.

    D. V. Grazhdankin and A. Seilacher, “Underground Vendobionta from Namibia,” Palaeontology 45, 57–78 (2002).

    Article  Google Scholar 

  26. 26.

    D. V. Grazhdankin and A. Y. Ivantsov, “Reconstructions of Biotopes of Ancient Metazoan of the Late Vendian White Sea Biota,” Paleontol. J. 30(6), 674–678 (1996).

    Google Scholar 

  27. 27.

    K. G. Grell and G. Benwitz, “Die Ultrastructur von Trichoplax adhaerens F.E. Schulze,” Cytobiologie 4, 216–240 (1971).

    Google Scholar 

  28. 28.

    K. G. Grell and G. Benwitz, “Erganzende Untersuchungen zur Ultrastructur von Trichoplax adhaerens F.E. Schulze (Placozoa),” Zoomorphology 98, 47–67 (1981).

    Article  Google Scholar 

  29. 29.

    A. V. Ivanov, “Trichoplax adhaerens—Phagocytella-Like Animal,” Zool. Zh. 52, 1117–1130 (1973).

    Google Scholar 

  30. 30.

    D. L. Ivanov, V. V. Malakhov, and A. B. Tsetlin, “Fine-Structure Morphology and Ultrastructure of the Primitive Multicellular Organism Trichoplax sp.: 1. Morphology of Adult Individuals and Swarmers according to the Data of Scanning Electron Microscopy,” Zool. Zh., No. 59, 1765–1767 (1980).

  31. 31.

    A. Yu. Ivantsov, Feeding Traces of the Ediacaran Animals,” in Abstracts of the International Geological Congress (Oslo, 2008).

  32. 32.

    A. Yu. Ivantsov and Ya. E. Malakhovskaya, “Giant Traces of Vendian Animals,” Dokl. Akad. Nauk 385, 328–386 (2002) [Dokl. Earth Sci. 385, 618–622 (2002)].

    Google Scholar 

  33. 33.

    K. M. Khailov, “Differences in the Use of Carbon of Different Physical and Chemical Forms of Food for the Biosynthesis and Growth of Marine Invertebrates,” in Proceedings of the Symposium on the Energy Aspects of Growth and Metabolism of Aquatic Invertebrates (Sevastopol, 9–11 October 1972) (Naukova Dumka, Kiev, 1972), pp. 222–224 [in Russian].

    Google Scholar 

  34. 34.

    V. I. Kholodov, Transformation of Organic Matter by Sea Urchins (Regularia) (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  35. 35.

    A. H. Knoll, E. J. Javaux, D. Hewitt, and P. Cohen, “Eucariotic Organisms in Proterozoic Oceans,” Philos. Trans. R. Soc., Biol. Sci. 361(1470), 1023–1038 (2006).

    Article  Google Scholar 

  36. 36.

    R. Lasker and A. C. Giese, “Nutrition of the Sea Urchin Strongilocentrorus droebachiensis,” Biol. Bull. 106, 328–340 (1954).

    Article  Google Scholar 

  37. 37.

    N. A. Latyshev, A. S. Khardin, and S. I. Kiyashko, “Fatty Acids as Markers of Starfish Food Sources,” Dokl. Akad. Nauk 380(5), 711–713 (2001) [Dokl. Biol. Sci. 380 (5), 489–491 (2001)].

    Google Scholar 

  38. 38.

    J. M. Lawrence, Digestion. In: M. Jangoux and J. M. Lawrence (eds.) Echinoderm Nutrition. A.A. Balkema, Rotterdam, 1982. P. 283–316.

    Google Scholar 

  39. 39.

    J. H. Lipps and J. W. Valentine, “Late Neoproterozoic Metazoa: Weird, Wonderful, and Ghostly,” in Neoproterozoic-Cambrian Biological Revolution, Ed. by J.H. Lipps and B.M. Waggoner (Paleontol. Soc. Pap. 10, New Haven, 2004), pp. 51–66.

  40. 40.

    V. V. Malakhov and L. P. Nezlin, “Trichoplax—A Living Model of the Origin of Multicellular Organisms,” Priroda (Moscow, Russ. Fed.), No. 3, 32–41 (1983).

    Google Scholar 

  41. 41.

    G. M. Narbonne, “Modular Construction of Early Ediacaran Complex Life Forms,” Science 305, 1141–1144 (2004).

    Article  Google Scholar 

  42. 42.

    I. L. Okshtein, “A Contribution to Biology of Trichoplax sp. (Placozoa),” Zool. Zh. 66, 339–347 (1987).

    Google Scholar 

  43. 43.

    E. Pequignat, “Some New Data on Skin-Digestion and Absorption in Urchins and Sea Stars (Asterias and Henricia),” Mar. Biol. 12(1), 28–41 (1972).

    Google Scholar 

  44. 44.

    K. J. Peterson, “Macroevolutionary Interplay between Planktonic Larvae and Benthic Predators,” Geology, No. 33, 929–932 (2005).

  45. 45.

    K. J. Peterson, B. Waggoner, and J. W. Hagadorn, “A Fungal Analog for Newfoundland Ediacaran Fossils,” Integr. Comp. Biol. 43, 127–136 (2003).

    Article  Google Scholar 

  46. 46.

    A. G. Ponomarenko, Principal events in the Evolution of the Ancient Biosphere, in: Problems of Pre-antropogenic Evolution of Biosphere, Nauka, Moscow, 1993, 15–25 [in Russian].

    Google Scholar 

  47. 47.

    A. G. Ponomarenko, Ecological Concequence of Artropodization, in: Ecosystem Restructures and the Evolution of Biosphere, 6, Palaeontological Institute RAS, Moscow, 2004, 7–22 [in Russian].

    Google Scholar 

  48. 48.

    C. L. Prosser and F. A. Brown, Comparative Animal Physiology (W.B. Saunders Company, Philadelphia-London, 1962).

    Google Scholar 

  49. 49.

    R. A. Raff, “Origins of the Other Metazoan Body Plans: The Evolution of Larval Forms,” Philos. Trans. R. Soc. London B. 363, 1473–1479 (2008).

    Article  Google Scholar 

  50. 50.

    S. P. Robson and B. R. Pratt, “Predation of Late Marjuman (Cambrian) Linguliformean Brachiopods from the Deadwood Formation of South Dacota, USA,” Lethaia 40(1), 19–32 (2007).

    Article  Google Scholar 

  51. 51.

    D. J. Ross, R. Johnson, and C. L. Hewitt, “Impact of Introduced Seastars Asterias amurensis on Survivorship of Juvenile Commercial Bivalves Fulvia temicostata,” Mar. Ecol. Progr., Ser. 5, 241, 99–112 (2002).

    Article  Google Scholar 

  52. 52.

    A. Yu. Rozanov, Bacterial Paleontology, Sedimentogenesis, and Early Stages of the Evolution of the Biosphere, in Modern Problems of Geology (Proceedings of the Geologic Institute), Ed. by Yu. O. Gavrilov and M. D. Khutorskoi (Nauka, Moscow, 2004), pp. 448–462 [in Russian].

    Google Scholar 

  53. 53.

    A. Yu. Rozanov, “Precambrian Geobiology,” Paleontol. J. 40(Suppl. 4), S434–S443 (2006).

    Article  Google Scholar 

  54. 54.

    S. V. Rozhnov, Evolution of the Hardground Community, in: The Ecology of the Cambrian Radiation, Ed. by A. Yu. Zhuravlev, R. Riding, Colombia University Press, New York, 2001, 238–253.

    Google Scholar 

  55. 55.

    S. V. Rozhnov, “Morphogenesis and Evolution of Crinoids and Other Pelmatozoan Echinoderms in the Early Paleozoic,” Paleontol. J. 36,(Suppl. 6), S525–S674 (2002).

    Google Scholar 

  56. 56.

    S. V. Rozhnov, “Appearance and Evolution of Marine Benthic Communities in the Early Palaeozoic,” Paleontol. J. 40(Suppl. 4), S444–S452 (2006).

    Article  Google Scholar 

  57. 57.

    S. V. Rozhnov, “Origin of Echinoderms in the Palaeozoic Evolutionary Fauna: Ecological Aspects,” Acta Palaeontol. Sin. 46,(Suppl. 1), 416–421 (2007a).

    Google Scholar 

  58. 58.

    S. V. Rozhnov, “New Data on Perittocrinids and Hybocrinids (Crinoidea, Echinodermata) from the Middle Ordovician of the Baltic Region,” Ann. Palěontol. 93(4), 261–276 (2007b).

    Article  Google Scholar 

  59. 59.

    S. V. Rozhnov, “The Evolution of the Trophic Structure of Marine Communities in the Vendian and Early Paleozoic,” in International Conference “Development of Early Paleozoic Biodiversity: Role of Biotic and Abiotic Factors, and Event Correlation” (Russia, 26–28 June, 2008, Moscow) (KMK Sci. Press. Moscow, 2008a), pp. 84–89 [in Russian].

    Google Scholar 

  60. 60.

    S. V. Rozhnov, “Establishment of Trophic Structure in Communities of the Late Precambrian and Early Paleozoic Epicontinental Seas,” in European Geological Union General Assembly 2008, Geophys. Res. Abstr. 10, (2008b).

  61. 61.

    S. V. Rozhnov, “The Role of Heterochrony in the Establishment of the Body Plans of Higher Echinoderm Taxa,” Biol. Bull. 36, 117–127 (2009).

    Article  Google Scholar 

  62. 62.

    S. V. Rozhnov and A. Yu. Ivantzov, “Echinoderm-Like Fossils from the White Sea (Russia): Problems of Identification,” in Abstracts of 21ème Rěunion des Sciences de la Terre (Dijon, 2006), p. 40.

  63. 63.

    S. V. Rozhnov and A. Yu. Ivantsov, “Problems of Identification of the Vendian Echinoderms,” in The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere (Transaction of the International Conference on the IGCP Project 493) (Geos, Moscow, 2007), pp. 21–27.

    Google Scholar 

  64. 64.

    A. Seilacher, “The Meaning of the Cambrian Explosion,” Bull. Natl. Mus. Nat. Sci., No. 10, 1–9 (1997).

  65. 65.

    A. Seilacher, “Vendozoa: Organismic Construction in the Proterozoic Biosphere,” Lethaia 22, 229–239 (1989).

    Article  Google Scholar 

  66. 66.

    A. Seilacher, “The Nature of Vendobionts,” in The Rise and Fall of the Ediacaran Biota (Geological Society Special Publications, No. 286), Ed. by P. Vickers-Rich and P. Komarower (2007), pp. 387–397.

  67. 67.

    A. Seilacher and F. Pfluger, “From Biomats to Benthic Agriculture: A Biohistoric Revolution,” in Biostabilization of Sediments, Ed. by W. E. Krumbein et al. (Bibliotheks und Informationsystem der Univ. Oldenburg, Oldenburg, 1994), pp. 97–105.

    Google Scholar 

  68. 68.

    A. Seilacher, D. Grazhdankin, and A. Legouta, “Ediacaran Biota: The Dawn of Animal Life in the Shadow of Giant Protists,” Paleontol. Res. 7(1), 43–54 (2003).

    Article  Google Scholar 

  69. 69.

    J. J. Sepkoski, Jr., “A Factor Analytic Description of the Phanerozoic Marine Fossil Record,” Paleobiology 7, 36–53, (1981).

    Google Scholar 

  70. 70.

    L. N. Seravin, “The Role of the Oral Lobes in the Nutrition and Digestion of the Scyphozoan Jellyfish Cyanea capillata (L.),” Dokl. Akad. Nauk SSSR 321, 1301–1303 (1991).

    Google Scholar 

  71. 71.

    L. N. Seravin and Z. P. Gerasimova, “Fine-Structure Features of a Trichoplax, Trichoplax adhaerens, Feeding on a Solid Plant Substrates,” Tsitologiya 30, 1188–1193 (1998).

    Google Scholar 

  72. 72.

    L. N. Seravin and A. V. Gudkov, Trichoplax adhaerens (Phylum Placozoa)—One of the Most Primitive Multicellular Animals (Handbook for Biology Students) (Tessa, St. Petersburg, 2005).

  73. 73.

    E. A. Serezhnikova, “Vendian Attachment Disks as Symbiotrophic Structures,” in The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere (Transaction of the International Conference on the IGCP Project 493) (Geos, Moscow, 2007), pp. 28–33.

    Google Scholar 

  74. 74.

    E. Serezhnikova, “Bacterial Symbiosis: The Driver for Morphological Peculiarities of the Vendian Organisms?,” in Abstracts of the International Geological Congress (Oslo, 2008).

  75. 75.

    T. Servais, O. Lehnert, J. Li, et al., “The Ordovician Biodiversification: Revolution in the Oceanic Trophic Chain,” Lethaia 41, 99–109 (2008).

    Article  Google Scholar 

  76. 76.

    P. V. Signor and G. J. Vermeij, “The Plankton and the Benthos: Origin and Early History of an Evolving Relationship,” Paleobiology, No. 20, 297–319 (1994).

  77. 77.

    O. A. Skarlato, Bivalve Mollusks of the Temperate Waters of the Northwestern Part of the Pacific Ocean (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  78. 78.

    B. S. Sokolov, “The Vendian Complex (Vendian) and the Problem of the Precambrian-Paleozoic Group Boundary,” in Precambrian Geology (Nauka, Moscow, 1964), pp. 135–150 [in Russian].

    Google Scholar 

  79. 79.

    M. N. Sokolova, “On the Nutrition of Some Species of Starfishes of the Family Astropectinidae,” in “Composition and Distribution of Benthic Invertebrates in the Seas of Russia and Adjacent Waters,” (Inst. Okeanol. Ross. Akad. Nauk, 1997), pp. 45–51.

  80. 80.

    Yu. I. Sorokin, Ecosystems of Coral Reefs. (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  81. 81.

    E. A. Tsikhon-Lukanina and G. G. Nikolaeva, “Nutrition of the Starfishes Asterina pectinifera and Asterias amurensis (Echinodermata, Asteroidea) in the Waters of Peter the Great Bay (the Sea of Japan),” Zool. Zh. 80(10), 1231–1236 (2007).

    Google Scholar 

  82. 82.

    J. Vannier and J. Chen, “Early Cambrian Food Chain: New Evidence from Fossil Aggregates in the Maotianshan Shale Biota, SW China,” Palaios 20(1), 3–26 (2003).

    Article  Google Scholar 

  83. 83.

    B. M. Waggoner, “Interpreting the Earliest Metazoan Fossils: What Can We Learn?,” Am. Zool. 38, 9 (1998).

    Google Scholar 

  84. 84.

    H. Wenderoth, “Transepithelial Cytophagy by Trichoplax adhaerens F.E. Schulze (Placozoa) Feeding on Yeast,” Z. Naturforsch. 41, 343–347 (1986).

    Google Scholar 

  85. 85.

    B. West, “Utilisation of Dissolved Glucose and Amino Acids by Leptometra phalangium,” Sci. Proc. R. Dublin Soc. A 6, 77–85 (1978).

    Google Scholar 

  86. 86.

    H. Xian-Guang, R. J. Aldridge, J. Bergstrom, et al., The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life (Blackwell Publ., 2004).

  87. 87.

    G. A. Zavarzin, Phenotypic Systematics of Bacteria: Space of Logical Possibilities (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  88. 88.

    G. A. Zavarzin, Lectures on Natural-History Microbiology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  89. 89.

    G. A. Zavarzin, “Microbial Cycles,” in Global Ecology. Vol. (3) of Encyclopedia of Ecology, Ed. by S.E. Jorgensen and Brian D. Fath (Elsevier, Oxford, 2008), pp. 2335–2341.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Rozhnov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rozhnov, S.V. Development of the trophic structure of Vendian and Early Paleozoic marine communities. Paleontol. J. 43, 1364–1377 (2009). https://doi.org/10.1134/S0031030109110021

Download citation

Key words

  • trophic structure
  • Vendian
  • Early Paleogoic
  • marine communities