Paleontological Journal

, Volume 43, Issue 11, pp 1364–1377 | Cite as

Development of the trophic structure of Vendian and Early Paleozoic marine communities

  • S. V. RozhnovEmail author


Major trophic links are reconstructed for the Vendian and Early Paleozoic. A hypothesis of the predominant development of extracorporeal or skin digestion in Vendian multicellular consumers is substantiated. The main food sources were algal-bacterial films, finely dispersed debris falling from the photic zone in cold shallow seas lacking a thermocline and debris on the surface of the sediment. Symbiosis with phototrophic and chemotrophic bacteria was widespread. Pelagic filtration and filtration of the near-bottom finely dispersed organic matter (including bacteria), and debris-feeding appeared when internal digestion became widespread in the Cambrian. These were supplemented in the Ordovician by feeding on the live phyto- and zooplankton in the water column one meter above the bottom. Before the Ordovician, feeding on live plankton and more so active predation on larger multicellular animals was the exception rather than the rule. The role of active predators in the biota did not become more important until the end of the Silurian. Mass morphogenesis among occurred multicellular animals as the amount and diversity of nutritional and/or spatial resources rapidly increased, while before that the lack of these was a limiting factor.

Key words

trophic structure Vendian Early Paleogoic marine communities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Babcock, “Trilobite Malformations and the Fossil Record of Behavioral Asymmetry,” J. Paleontol. 67(2), 217–229 (1993).Google Scholar
  2. 2.
    L. E. Babcock and R. A. Robinson, “Preferences of Palaeozoic Predators,” Nature 337, 695–696 (1989).CrossRefGoogle Scholar
  3. 3.
    R. K. Bambach, A. M. Bush, and D. H. Erwin, “Autecology and the Filling of Ecospace: Key Metazoan Radiations,” Palaeontology 50(Part 1), 1–22 (2007).CrossRefGoogle Scholar
  4. 4.
    D. Bamford, “Epithelial Absorption In: Jangoux M. and J.M. Lawrence (eds.) Echinaterm Nutrition. A.A. Balkema, Ratterdam, 1966. P. 317–330.Google Scholar
  5. 5.
    G. Behrendt and A. Ruthmann, “The Cytoskeleton of the Fiber Cells of Trichoplax adhaerens (Placozoa),” Zoomorphology 106, 123–130 (1986).CrossRefGoogle Scholar
  6. 6.
    D. B. Blake, “Adaptive Zones of the Class Asteroidea (Echinodermata),” Bull. Mar. Sci. 46(3), 701–718 (1990).Google Scholar
  7. 7.
    D. J. Bottjer and W. I. Ausich, “Phanerozoic Development of Tiering in Soft Substrate Suspension-Feeding Communities,” Paleobiology 12, 400–420 (1986).Google Scholar
  8. 8.
    D. J. Bottjer and M. E. Clapham, “Evolutionary Paleocology of Ediacaran Benthic Marine Animals” in Neoproteozoic Geobiology and Paleobiology, Ed. by S. Xiao and A.J. Kaufman (Springer, 2006), 91–114.Google Scholar
  9. 9.
    D. E. Briggs, D. H. Erwin, and F. J. Collier, The Fossils of the Burgess Shale (Smithsonian Institution Press, Washington DC, 1994).Google Scholar
  10. 10.
    N. J. Butterfield, “Plankton Ecology and the Proterozoic-Phanerozoic Transition,” Paleobiology 23, 247–262 (1997).Google Scholar
  11. 11.
    N. J. Butterfield, “Ecology and Evolution of Cambrian Plankton”, in The Ecology of the Cambrian Radiation, Ed. by A.Yu. Zhuravlev and R. Riding (Columbia University Press, New York, 2001a), 200–216.Google Scholar
  12. 12.
    N. J. Butterfield, “Cambrian Food Webs” in Palaebiology II, a Synthesis, Ed. by D.E.G. Briggs and P.R. Crowther (Blackwell Scietific, Oxford, 2001b), 40–43.Google Scholar
  13. 13.
    N. J. Butterfield, “Macroevolution and Macroecology through Deep Time,” Palaeontology 50(Part 1), 41–55 (2007).CrossRefGoogle Scholar
  14. 14.
    P. Cloud and M. F. Glaessner, “The Ediacarian Period and System: Metazoa Inherit the Earth,” Science 217(4562), 783–792 (1982).CrossRefGoogle Scholar
  15. 15.
    M. L. Droser, S. Jensen, and J. G. Gehling, “Trace Fossils and Substrates of the Terminal Proterozoic-Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing,” Proc. Natl. Acad. Sci. USA. 99, 12572–12576 (2002b).CrossRefGoogle Scholar
  16. 16.
    M. A. Fedonkin, “Cold Water Cradle of Animal Life,” Paleontol. J. 30(6), 669–673 (1996).Google Scholar
  17. 17.
    M. A. Fedonkin, “Cold Outset of Animal Life,” Priroda, No. 9, 3–11 (2000).Google Scholar
  18. 18.
    M. A. Fedonkin, “The Origin of the Metazoa in the Light of the Proterozoic Fossil Record,” Paleontol. Res. 7(1), 9–41 (2003).CrossRefGoogle Scholar
  19. 19.
    M. A. Fedonkin, A. Simonetta and A. Y. Ivantsov, New Data on Kimberella, the Vedndian Molusk-like Organism (White Sea Region, Russia): Palaeoecological and Evolutionary Implications in The Rise and Fall of the Ediacaran Biota (Geological Society Special Publication no. 286), Eds. by P. Vickers-Rich, P. Komarower, 157–179.Google Scholar
  20. 20.
    M. A. Fedonkin, Soft-Bodied Vendian Fauna and Its Place in the Evolution of Metazoa: Proceedings of the Paleontological Institute of the Academy of Sciences of the USSR, Vol. 226 (Nauka, Moscow, 1987) [in Russian].Google Scholar
  21. 21.
    N. S. Gaevskaya, “The Main Problems in Studying the Food Resources and Feeding Habits of Fishes in Terms of the Major Biological Problems of Fish Industry,” in Trophology of Aquatic Animals: Results and Problems (Nauka, Moscow, 1973), pp. 18–37 [in Russian].Google Scholar
  22. 22.
    J. G. Gehling, “Earliest Known Echinoderm—A New Ediacaran Fossil from the Pound Subgroup of South Australia,” Alcheringa 11, 337–345 (1987).CrossRefGoogle Scholar
  23. 23.
    M. F. Glaessner, The Dawn of Animal Life: A Biohistorical Study (Cambridge Univ. Press, Cambridge, 1984).Google Scholar
  24. 24.
    A. N. Golikov and O. A. Skarlato, “The Effect of Mussel Breeding in the White Sea on the Benthos in the Adjacent Waters,” Biol. Morya, No. 4, 68–73 (1979).Google Scholar
  25. 25.
    D. V. Grazhdankin and A. Seilacher, “Underground Vendobionta from Namibia,” Palaeontology 45, 57–78 (2002).CrossRefGoogle Scholar
  26. 26.
    D. V. Grazhdankin and A. Y. Ivantsov, “Reconstructions of Biotopes of Ancient Metazoan of the Late Vendian White Sea Biota,” Paleontol. J. 30(6), 674–678 (1996).Google Scholar
  27. 27.
    K. G. Grell and G. Benwitz, “Die Ultrastructur von Trichoplax adhaerens F.E. Schulze,” Cytobiologie 4, 216–240 (1971).Google Scholar
  28. 28.
    K. G. Grell and G. Benwitz, “Erganzende Untersuchungen zur Ultrastructur von Trichoplax adhaerens F.E. Schulze (Placozoa),” Zoomorphology 98, 47–67 (1981).CrossRefGoogle Scholar
  29. 29.
    A. V. Ivanov, “Trichoplax adhaerens—Phagocytella-Like Animal,” Zool. Zh. 52, 1117–1130 (1973).Google Scholar
  30. 30.
    D. L. Ivanov, V. V. Malakhov, and A. B. Tsetlin, “Fine-Structure Morphology and Ultrastructure of the Primitive Multicellular Organism Trichoplax sp.: 1. Morphology of Adult Individuals and Swarmers according to the Data of Scanning Electron Microscopy,” Zool. Zh., No. 59, 1765–1767 (1980).Google Scholar
  31. 31.
    A. Yu. Ivantsov, Feeding Traces of the Ediacaran Animals,” in Abstracts of the International Geological Congress (Oslo, 2008).Google Scholar
  32. 32.
    A. Yu. Ivantsov and Ya. E. Malakhovskaya, “Giant Traces of Vendian Animals,” Dokl. Akad. Nauk 385, 328–386 (2002) [Dokl. Earth Sci. 385, 618–622 (2002)].Google Scholar
  33. 33.
    K. M. Khailov, “Differences in the Use of Carbon of Different Physical and Chemical Forms of Food for the Biosynthesis and Growth of Marine Invertebrates,” in Proceedings of the Symposium on the Energy Aspects of Growth and Metabolism of Aquatic Invertebrates (Sevastopol, 9–11 October 1972) (Naukova Dumka, Kiev, 1972), pp. 222–224 [in Russian].Google Scholar
  34. 34.
    V. I. Kholodov, Transformation of Organic Matter by Sea Urchins (Regularia) (Naukova Dumka, Kiev, 1981) [in Russian].Google Scholar
  35. 35.
    A. H. Knoll, E. J. Javaux, D. Hewitt, and P. Cohen, “Eucariotic Organisms in Proterozoic Oceans,” Philos. Trans. R. Soc., Biol. Sci. 361(1470), 1023–1038 (2006).CrossRefGoogle Scholar
  36. 36.
    R. Lasker and A. C. Giese, “Nutrition of the Sea Urchin Strongilocentrorus droebachiensis,” Biol. Bull. 106, 328–340 (1954).CrossRefGoogle Scholar
  37. 37.
    N. A. Latyshev, A. S. Khardin, and S. I. Kiyashko, “Fatty Acids as Markers of Starfish Food Sources,” Dokl. Akad. Nauk 380(5), 711–713 (2001) [Dokl. Biol. Sci. 380 (5), 489–491 (2001)].Google Scholar
  38. 38.
    J. M. Lawrence, Digestion. In: M. Jangoux and J. M. Lawrence (eds.) Echinoderm Nutrition. A.A. Balkema, Rotterdam, 1982. P. 283–316.Google Scholar
  39. 39.
    J. H. Lipps and J. W. Valentine, “Late Neoproterozoic Metazoa: Weird, Wonderful, and Ghostly,” in Neoproterozoic-Cambrian Biological Revolution, Ed. by J.H. Lipps and B.M. Waggoner (Paleontol. Soc. Pap. 10, New Haven, 2004), pp. 51–66.Google Scholar
  40. 40.
    V. V. Malakhov and L. P. Nezlin, “Trichoplax—A Living Model of the Origin of Multicellular Organisms,” Priroda (Moscow, Russ. Fed.), No. 3, 32–41 (1983).Google Scholar
  41. 41.
    G. M. Narbonne, “Modular Construction of Early Ediacaran Complex Life Forms,” Science 305, 1141–1144 (2004).CrossRefGoogle Scholar
  42. 42.
    I. L. Okshtein, “A Contribution to Biology of Trichoplax sp. (Placozoa),” Zool. Zh. 66, 339–347 (1987).Google Scholar
  43. 43.
    E. Pequignat, “Some New Data on Skin-Digestion and Absorption in Urchins and Sea Stars (Asterias and Henricia),” Mar. Biol. 12(1), 28–41 (1972).Google Scholar
  44. 44.
    K. J. Peterson, “Macroevolutionary Interplay between Planktonic Larvae and Benthic Predators,” Geology, No. 33, 929–932 (2005).Google Scholar
  45. 45.
    K. J. Peterson, B. Waggoner, and J. W. Hagadorn, “A Fungal Analog for Newfoundland Ediacaran Fossils,” Integr. Comp. Biol. 43, 127–136 (2003).CrossRefGoogle Scholar
  46. 46.
    A. G. Ponomarenko, Principal events in the Evolution of the Ancient Biosphere, in: Problems of Pre-antropogenic Evolution of Biosphere, Nauka, Moscow, 1993, 15–25 [in Russian].Google Scholar
  47. 47.
    A. G. Ponomarenko, Ecological Concequence of Artropodization, in: Ecosystem Restructures and the Evolution of Biosphere, 6, Palaeontological Institute RAS, Moscow, 2004, 7–22 [in Russian].Google Scholar
  48. 48.
    C. L. Prosser and F. A. Brown, Comparative Animal Physiology (W.B. Saunders Company, Philadelphia-London, 1962).Google Scholar
  49. 49.
    R. A. Raff, “Origins of the Other Metazoan Body Plans: The Evolution of Larval Forms,” Philos. Trans. R. Soc. London B. 363, 1473–1479 (2008).CrossRefGoogle Scholar
  50. 50.
    S. P. Robson and B. R. Pratt, “Predation of Late Marjuman (Cambrian) Linguliformean Brachiopods from the Deadwood Formation of South Dacota, USA,” Lethaia 40(1), 19–32 (2007).CrossRefGoogle Scholar
  51. 51.
    D. J. Ross, R. Johnson, and C. L. Hewitt, “Impact of Introduced Seastars Asterias amurensis on Survivorship of Juvenile Commercial Bivalves Fulvia temicostata,” Mar. Ecol. Progr., Ser. 5, 241, 99–112 (2002).CrossRefGoogle Scholar
  52. 52.
    A. Yu. Rozanov, Bacterial Paleontology, Sedimentogenesis, and Early Stages of the Evolution of the Biosphere, in Modern Problems of Geology (Proceedings of the Geologic Institute), Ed. by Yu. O. Gavrilov and M. D. Khutorskoi (Nauka, Moscow, 2004), pp. 448–462 [in Russian].Google Scholar
  53. 53.
    A. Yu. Rozanov, “Precambrian Geobiology,” Paleontol. J. 40(Suppl. 4), S434–S443 (2006).CrossRefGoogle Scholar
  54. 54.
    S. V. Rozhnov, Evolution of the Hardground Community, in: The Ecology of the Cambrian Radiation, Ed. by A. Yu. Zhuravlev, R. Riding, Colombia University Press, New York, 2001, 238–253.Google Scholar
  55. 55.
    S. V. Rozhnov, “Morphogenesis and Evolution of Crinoids and Other Pelmatozoan Echinoderms in the Early Paleozoic,” Paleontol. J. 36,(Suppl. 6), S525–S674 (2002).Google Scholar
  56. 56.
    S. V. Rozhnov, “Appearance and Evolution of Marine Benthic Communities in the Early Palaeozoic,” Paleontol. J. 40(Suppl. 4), S444–S452 (2006).CrossRefGoogle Scholar
  57. 57.
    S. V. Rozhnov, “Origin of Echinoderms in the Palaeozoic Evolutionary Fauna: Ecological Aspects,” Acta Palaeontol. Sin. 46,(Suppl. 1), 416–421 (2007a).Google Scholar
  58. 58.
    S. V. Rozhnov, “New Data on Perittocrinids and Hybocrinids (Crinoidea, Echinodermata) from the Middle Ordovician of the Baltic Region,” Ann. Palěontol. 93(4), 261–276 (2007b).CrossRefGoogle Scholar
  59. 59.
    S. V. Rozhnov, “The Evolution of the Trophic Structure of Marine Communities in the Vendian and Early Paleozoic,” in International Conference “Development of Early Paleozoic Biodiversity: Role of Biotic and Abiotic Factors, and Event Correlation” (Russia, 26–28 June, 2008, Moscow) (KMK Sci. Press. Moscow, 2008a), pp. 84–89 [in Russian].Google Scholar
  60. 60.
    S. V. Rozhnov, “Establishment of Trophic Structure in Communities of the Late Precambrian and Early Paleozoic Epicontinental Seas,” in European Geological Union General Assembly 2008, Geophys. Res. Abstr. 10, (2008b).Google Scholar
  61. 61.
    S. V. Rozhnov, “The Role of Heterochrony in the Establishment of the Body Plans of Higher Echinoderm Taxa,” Biol. Bull. 36, 117–127 (2009).CrossRefGoogle Scholar
  62. 62.
    S. V. Rozhnov and A. Yu. Ivantzov, “Echinoderm-Like Fossils from the White Sea (Russia): Problems of Identification,” in Abstracts of 21ème Rěunion des Sciences de la Terre (Dijon, 2006), p. 40.Google Scholar
  63. 63.
    S. V. Rozhnov and A. Yu. Ivantsov, “Problems of Identification of the Vendian Echinoderms,” in The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere (Transaction of the International Conference on the IGCP Project 493) (Geos, Moscow, 2007), pp. 21–27.Google Scholar
  64. 64.
    A. Seilacher, “The Meaning of the Cambrian Explosion,” Bull. Natl. Mus. Nat. Sci., No. 10, 1–9 (1997).Google Scholar
  65. 65.
    A. Seilacher, “Vendozoa: Organismic Construction in the Proterozoic Biosphere,” Lethaia 22, 229–239 (1989).CrossRefGoogle Scholar
  66. 66.
    A. Seilacher, “The Nature of Vendobionts,” in The Rise and Fall of the Ediacaran Biota (Geological Society Special Publications, No. 286), Ed. by P. Vickers-Rich and P. Komarower (2007), pp. 387–397.Google Scholar
  67. 67.
    A. Seilacher and F. Pfluger, “From Biomats to Benthic Agriculture: A Biohistoric Revolution,” in Biostabilization of Sediments, Ed. by W. E. Krumbein et al. (Bibliotheks und Informationsystem der Univ. Oldenburg, Oldenburg, 1994), pp. 97–105.Google Scholar
  68. 68.
    A. Seilacher, D. Grazhdankin, and A. Legouta, “Ediacaran Biota: The Dawn of Animal Life in the Shadow of Giant Protists,” Paleontol. Res. 7(1), 43–54 (2003).CrossRefGoogle Scholar
  69. 69.
    J. J. Sepkoski, Jr., “A Factor Analytic Description of the Phanerozoic Marine Fossil Record,” Paleobiology 7, 36–53, (1981).Google Scholar
  70. 70.
    L. N. Seravin, “The Role of the Oral Lobes in the Nutrition and Digestion of the Scyphozoan Jellyfish Cyanea capillata (L.),” Dokl. Akad. Nauk SSSR 321, 1301–1303 (1991).Google Scholar
  71. 71.
    L. N. Seravin and Z. P. Gerasimova, “Fine-Structure Features of a Trichoplax, Trichoplax adhaerens, Feeding on a Solid Plant Substrates,” Tsitologiya 30, 1188–1193 (1998).Google Scholar
  72. 72.
    L. N. Seravin and A. V. Gudkov, Trichoplax adhaerens (Phylum Placozoa)—One of the Most Primitive Multicellular Animals (Handbook for Biology Students) (Tessa, St. Petersburg, 2005).Google Scholar
  73. 73.
    E. A. Serezhnikova, “Vendian Attachment Disks as Symbiotrophic Structures,” in The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere (Transaction of the International Conference on the IGCP Project 493) (Geos, Moscow, 2007), pp. 28–33.Google Scholar
  74. 74.
    E. Serezhnikova, “Bacterial Symbiosis: The Driver for Morphological Peculiarities of the Vendian Organisms?,” in Abstracts of the International Geological Congress (Oslo, 2008).Google Scholar
  75. 75.
    T. Servais, O. Lehnert, J. Li, et al., “The Ordovician Biodiversification: Revolution in the Oceanic Trophic Chain,” Lethaia 41, 99–109 (2008).CrossRefGoogle Scholar
  76. 76.
    P. V. Signor and G. J. Vermeij, “The Plankton and the Benthos: Origin and Early History of an Evolving Relationship,” Paleobiology, No. 20, 297–319 (1994).Google Scholar
  77. 77.
    O. A. Skarlato, Bivalve Mollusks of the Temperate Waters of the Northwestern Part of the Pacific Ocean (Nauka, Leningrad, 1981) [in Russian].Google Scholar
  78. 78.
    B. S. Sokolov, “The Vendian Complex (Vendian) and the Problem of the Precambrian-Paleozoic Group Boundary,” in Precambrian Geology (Nauka, Moscow, 1964), pp. 135–150 [in Russian].Google Scholar
  79. 79.
    M. N. Sokolova, “On the Nutrition of Some Species of Starfishes of the Family Astropectinidae,” in “Composition and Distribution of Benthic Invertebrates in the Seas of Russia and Adjacent Waters,” (Inst. Okeanol. Ross. Akad. Nauk, 1997), pp. 45–51.Google Scholar
  80. 80.
    Yu. I. Sorokin, Ecosystems of Coral Reefs. (Nauka, Moscow, 1990) [in Russian].Google Scholar
  81. 81.
    E. A. Tsikhon-Lukanina and G. G. Nikolaeva, “Nutrition of the Starfishes Asterina pectinifera and Asterias amurensis (Echinodermata, Asteroidea) in the Waters of Peter the Great Bay (the Sea of Japan),” Zool. Zh. 80(10), 1231–1236 (2007).Google Scholar
  82. 82.
    J. Vannier and J. Chen, “Early Cambrian Food Chain: New Evidence from Fossil Aggregates in the Maotianshan Shale Biota, SW China,” Palaios 20(1), 3–26 (2003).CrossRefGoogle Scholar
  83. 83.
    B. M. Waggoner, “Interpreting the Earliest Metazoan Fossils: What Can We Learn?,” Am. Zool. 38, 9 (1998).Google Scholar
  84. 84.
    H. Wenderoth, “Transepithelial Cytophagy by Trichoplax adhaerens F.E. Schulze (Placozoa) Feeding on Yeast,” Z. Naturforsch. 41, 343–347 (1986).Google Scholar
  85. 85.
    B. West, “Utilisation of Dissolved Glucose and Amino Acids by Leptometra phalangium,” Sci. Proc. R. Dublin Soc. A 6, 77–85 (1978).Google Scholar
  86. 86.
    H. Xian-Guang, R. J. Aldridge, J. Bergstrom, et al., The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life (Blackwell Publ., 2004).Google Scholar
  87. 87.
    G. A. Zavarzin, Phenotypic Systematics of Bacteria: Space of Logical Possibilities (Nauka, Moscow, 1974) [in Russian].Google Scholar
  88. 88.
    G. A. Zavarzin, Lectures on Natural-History Microbiology (Nauka, Moscow, 2003) [in Russian].Google Scholar
  89. 89.
    G. A. Zavarzin, “Microbial Cycles,” in Global Ecology. Vol. (3) of Encyclopedia of Ecology, Ed. by S.E. Jorgensen and Brian D. Fath (Elsevier, Oxford, 2008), pp. 2335–2341.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations