Paleontological Journal

, Volume 43, Issue 8, pp 980–985 | Cite as

Maximum entropy production and general trends in biospheric evolution

  • A. KleidonEmail author


The biosphere has greatly shaped the past evolution of the Earth system. Here I argue that life evolved to maximize planetary entropy production. The evolution of the Earth system through time has thus evolved as far away from thermodynamic equilibrium as possible. I describe the implications of this hypothesis for the evolution of the global cycles of water and carbon and the implied consequences for biospheric evolution. This thermodynamic perspective of Earth’s biospheric evolution extends the views of Vernadski and Lovelock and puts it on a quantitative foundation.

Key words

Thermodynamics biosphere entropy production hydrologic cycle carbon cycle Earth system science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, “Oceanic Phytoplankton, Atmospheric Sulfur, Cloud Albedo, and Climate,” Nature 326, 655–661 (1987).CrossRefGoogle Scholar
  2. 2.
    C. Goldblatt, T. M. Lenton, and A. J. Watson, “Bistability of Atmospheric Oxygen and the Great Oxidation,” Nature 443, 683–686 (2006).CrossRefGoogle Scholar
  3. 3.
    H. H. Holland, “The Oxygenation of the Atmosphere and Oceans,” Phil. Trans. R. Soc. B 361, 903–915 (2006).CrossRefGoogle Scholar
  4. 4.
    IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
  5. 5.
    J. W. Kirchner, “The Gaia Hypothesis: Can It Be Tested?,” Rev. Geophys. 27, 223–235 (1989).CrossRefGoogle Scholar
  6. 6.
    A. Kleidon, Beyond Gaia: Thermodynamics of Life and Earth system functioning, Clim. Ch. 66: 271–319 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Kleidon and K. Fraedrich, “Biotic Entropy Production and Global Atmosphere-Biosphere Interactions,” in Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and beyond, Ed. by A. Kleidon and R. D. Lorenz (Springer, Heidelberg, 2005), pp. 173–190.CrossRefGoogle Scholar
  8. 8.
    A. Kleidon and R. D. Lorenz, Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and beyond (Springer, Heidelberg, 2005).CrossRefGoogle Scholar
  9. 9.
    D. K. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998).Google Scholar
  10. 10.
    T. M. Lenton, H. J. Schellnhuber, and E. Szathmary, “Climbing the Co-evolution Ladder,” Nature 431, 913 (2004).CrossRefGoogle Scholar
  11. 11.
    J. E. Lovelock, “A Physical Basis for Life Detection Experiments,” Nature 207, 568–570 (1965).CrossRefGoogle Scholar
  12. 12.
    J. E. Lovelock, Gaia: A New Look at Life on Earth (Oxford Univ. Press, Oxford, 1972).Google Scholar
  13. 13.
    J. E. Lovelock and L. Margulis, “Atmospheric Homeostasis by and for the Biosphere: the Gaia Hypothesis,” Tellus 26, 1–10 (1974).CrossRefGoogle Scholar
  14. 14.
    W. Martin and M. J. Russell, “On the Origin of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells,” Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003).CrossRefGoogle Scholar
  15. 15.
    K. J. Niklas, B. H. Tiffney, and A. H. Knoll, “Patterns in Vascular Land Plant Diversification,” Nature 303, 614–616 (1983).CrossRefGoogle Scholar
  16. 16.
    H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, “The Second Law of Thermodynamics and the Global Climate System—A Review of the Maximum Entropy Production Principle,” Rev. Geophys. 41, 1018 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Pavlov, J. F. Kasting, L. L. Brown, et al., “Greenhouse Warming by CH4 in the Atmosphere of Early Earth,” J. Geophys. Res. 105, 11981–11990 (2000).CrossRefGoogle Scholar
  18. 18.
    A. J. Ridgwell, M. J. Kennedy, and K. Caldeira, “Carbonate Deposition, Climate Stability, and Neoproterozoic Ice Ages,” Science 302, 859–862 (2003).CrossRefGoogle Scholar
  19. 19.
    D. W. Schwartzman, Life, Temperature, and the Earth: The Self-Organizing Biosphere (Columbia Univ. Press, New York, 1999).Google Scholar
  20. 20.
    D. W. Schwartzman and T. Volk, “Biotic Enhancement of Weathering and the Habitability of Earth,” Nature 340 457–460 (1989).CrossRefGoogle Scholar
  21. 21.
    J. J. Sepkoski Jr, R. K. Bambach, D. M. Raup, and J. W. Valentine, “Phanerozoic Marine Diversity and the Fossil Record,” Nature 293, 435–437 (1981).CrossRefGoogle Scholar
  22. 22.
    G. E. Shaw, “Bio-controlled Thermostasis Involving the Sulfur Cycle,” Clim. Ch. 5, 297–303 (1983).CrossRefGoogle Scholar
  23. 23.
    V. I. Vernadsky, Biosphere (Nauka, Leningrad, 1926) [in Russian] (translated and reprinted in 1998, Springer Verlag, New York).Google Scholar
  24. 24.
    A. I. Zotin, “Bioenergetic Trends of Evolutionary Progress of Organisms,” in Thermodynamics and Regulation of Biological Processes, Ed. by I. Lamprecht and A.I. Zotin (de Gruyter, Berlin-New York, 1984), pp. 451–458.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Biospheric Theory and Modelling GroupMax-Planck-Institut für BiogeochemieJenaGermany

Personalised recommendations