Skip to main content
Log in

Maximum entropy production and general trends in biospheric evolution

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The biosphere has greatly shaped the past evolution of the Earth system. Here I argue that life evolved to maximize planetary entropy production. The evolution of the Earth system through time has thus evolved as far away from thermodynamic equilibrium as possible. I describe the implications of this hypothesis for the evolution of the global cycles of water and carbon and the implied consequences for biospheric evolution. This thermodynamic perspective of Earth’s biospheric evolution extends the views of Vernadski and Lovelock and puts it on a quantitative foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, “Oceanic Phytoplankton, Atmospheric Sulfur, Cloud Albedo, and Climate,” Nature 326, 655–661 (1987).

    Article  Google Scholar 

  2. C. Goldblatt, T. M. Lenton, and A. J. Watson, “Bistability of Atmospheric Oxygen and the Great Oxidation,” Nature 443, 683–686 (2006).

    Article  Google Scholar 

  3. H. H. Holland, “The Oxygenation of the Atmosphere and Oceans,” Phil. Trans. R. Soc. B 361, 903–915 (2006).

    Article  Google Scholar 

  4. IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  5. J. W. Kirchner, “The Gaia Hypothesis: Can It Be Tested?,” Rev. Geophys. 27, 223–235 (1989).

    Article  Google Scholar 

  6. A. Kleidon, Beyond Gaia: Thermodynamics of Life and Earth system functioning, Clim. Ch. 66: 271–319 (2004).

    Article  Google Scholar 

  7. A. Kleidon and K. Fraedrich, “Biotic Entropy Production and Global Atmosphere-Biosphere Interactions,” in Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and beyond, Ed. by A. Kleidon and R. D. Lorenz (Springer, Heidelberg, 2005), pp. 173–190.

    Chapter  Google Scholar 

  8. A. Kleidon and R. D. Lorenz, Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and beyond (Springer, Heidelberg, 2005).

    Book  Google Scholar 

  9. D. K. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998).

    Google Scholar 

  10. T. M. Lenton, H. J. Schellnhuber, and E. Szathmary, “Climbing the Co-evolution Ladder,” Nature 431, 913 (2004).

    Article  Google Scholar 

  11. J. E. Lovelock, “A Physical Basis for Life Detection Experiments,” Nature 207, 568–570 (1965).

    Article  Google Scholar 

  12. J. E. Lovelock, Gaia: A New Look at Life on Earth (Oxford Univ. Press, Oxford, 1972).

    Google Scholar 

  13. J. E. Lovelock and L. Margulis, “Atmospheric Homeostasis by and for the Biosphere: the Gaia Hypothesis,” Tellus 26, 1–10 (1974).

    Article  Google Scholar 

  14. W. Martin and M. J. Russell, “On the Origin of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells,” Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003).

    Article  Google Scholar 

  15. K. J. Niklas, B. H. Tiffney, and A. H. Knoll, “Patterns in Vascular Land Plant Diversification,” Nature 303, 614–616 (1983).

    Article  Google Scholar 

  16. H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, “The Second Law of Thermodynamics and the Global Climate System—A Review of the Maximum Entropy Production Principle,” Rev. Geophys. 41, 1018 (2003).

    Article  Google Scholar 

  17. A. Pavlov, J. F. Kasting, L. L. Brown, et al., “Greenhouse Warming by CH4 in the Atmosphere of Early Earth,” J. Geophys. Res. 105, 11981–11990 (2000).

    Article  Google Scholar 

  18. A. J. Ridgwell, M. J. Kennedy, and K. Caldeira, “Carbonate Deposition, Climate Stability, and Neoproterozoic Ice Ages,” Science 302, 859–862 (2003).

    Article  Google Scholar 

  19. D. W. Schwartzman, Life, Temperature, and the Earth: The Self-Organizing Biosphere (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  20. D. W. Schwartzman and T. Volk, “Biotic Enhancement of Weathering and the Habitability of Earth,” Nature 340 457–460 (1989).

    Article  Google Scholar 

  21. J. J. Sepkoski Jr, R. K. Bambach, D. M. Raup, and J. W. Valentine, “Phanerozoic Marine Diversity and the Fossil Record,” Nature 293, 435–437 (1981).

    Article  Google Scholar 

  22. G. E. Shaw, “Bio-controlled Thermostasis Involving the Sulfur Cycle,” Clim. Ch. 5, 297–303 (1983).

    Article  Google Scholar 

  23. V. I. Vernadsky, Biosphere (Nauka, Leningrad, 1926) [in Russian] (translated and reprinted in 1998, Springer Verlag, New York).

    Google Scholar 

  24. A. I. Zotin, “Bioenergetic Trends of Evolutionary Progress of Organisms,” in Thermodynamics and Regulation of Biological Processes, Ed. by I. Lamprecht and A.I. Zotin (de Gruyter, Berlin-New York, 1984), pp. 451–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kleidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleidon, A. Maximum entropy production and general trends in biospheric evolution. Paleontol. J. 43, 980–985 (2009). https://doi.org/10.1134/S0031030109080164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030109080164

Key words

Navigation