Skip to main content
Log in

Microbial biopshere

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Evolution of the prokaryotic biosphere is regarded from the system point of view. It starts with the appearance of the first organisms, the ∼3.5 Ga date forming the boundary between the observed and imagined biosphere. The prokaryotic community dominated from the Archean to the Mesoproterozoic. Prokaryotes make a sustainable community due to the cooperative action of specialized forms. The main route for establishing a community is made by trophic links. The structure of the trophic links in the prokaryotic community making a trophic network is an invariant, with secondary adaptive deviations. Material balance is the ultimate requirement for a long living self-supporting system. The system of biogeospheric cycles is dictated by the constancy of biomass composition establishing a quantitative ratio between Corg:Norg:Porg. Biospheric processes are driven by the Corg-cycle. Carbon assimilation is limited by the size of the illuminated moist surface populated by producers, meaning that Corg-production remains within an order of magnitude of 102 Gt/yr. Evolution of primary producers forms a basis for the evolution of the biospheric-geospheric system, and cyanobacteria integrated as chloroplasts remain its driving force. Decomposition of organic compounds is performed by organotrophic destructors, anacrobic being less effective. Destructors determine the residual Corg accumulation. Recalcitrant Corg remaining in the sedimentary record is equilibrated by O2 and other oxidized compounds as Fe-oxides or sulfates. Geospheric and biotic interactions include both direct and biotically mediated processes; the most important is the weathering-sedimentation pathway. Prokaryotic community makes a sustainable frame into which all other more complex forms of life fit. That makes the prokaryotic biosphere a permanent essence of the whole system. New participants might come in and substitute functional components only when they fit to the existing system. The evolution of a large system is additive rather than substitutive. The message of this is; “we all originated from the cyanobacterial community.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Arp, “Calcification of Non-marine Cyanobacterial Biofilms (USA, PR China, Indonesia, Germany)—Implications for the Interpretation of Fossil Microbialites,” Dissertation Georg-August-Universität Göttingen (1999) [delivered by the courtesy of the author].

  2. G. Arp, A. Reimer, and J. Reitner, “Calcification in Cyanobacterial Biofilms of Alkaline Salt Lakes,” Eur. J. Phycol. 34, 393–403 (1999).

    Article  Google Scholar 

  3. E. A. Bonch-Osmolovskaya, M. L. Miroshnichenko, T. G. Sokolova, and A. I. Slobodkin, “Thermophilic Microbial Communities: New Physiological Groups, New Habitats,”, Tr. Winogradsky Inst. Microbiol. 12, 29–40 (2004).

    Google Scholar 

  4. T. D. Brock, Thermophiles: General, Molecular, and Applied Microbiology (Wiley & Sons, New York, 1986).

    Google Scholar 

  5. Y. Cohen and E. Rosenberg (Eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities (ASM, Washington DC, 1989).

    Google Scholar 

  6. S. A. Franck and G. A. Zavarzin, “What Are the Necessary Conditions for Origin of Life and Subsequent Planetary Life-Support Systems?,” in Dahlem Konferenzien 91: Earth System Analysis for Sustainability (MIT Press, Cambridge Massachusetts, London UK, 2003), pp. 74–90.

    Google Scholar 

  7. M. Heidegger, Was heißt Denken? Vorlesung Wintersemestr 1951/52 (Philipp Reclam jun., Stuttgart, 1984).

    Google Scholar 

  8. L. M. Gerasimenko and V. K. Orleansky, “Actualistic Paleontology of Cyanobacteria,” Tr. Winogradsky Inst. Microbiol. 12, 80–108 (2004).

    Google Scholar 

  9. L. M. Gerasimenko and G. A. Zavarzin, “Metabolism of H2 in Cyanobacterial Communities,” Microbiologia 51, 718–722 (1982).

    Google Scholar 

  10. J. P. Grotzinger, “Facies and Evolution of Precambrian Carbonate Depositional Systems: Emergence of the Modern Platform Archetype, Controls on Carbonate Platform and Basin Development,” SEPM Spec. Publ. 44, 79–104 (1989).

    Google Scholar 

  11. G. A. Karpov, V. A. Eroschev-Shakh, and G. A. Zavarzin, “Role of Biogenic Factor in the Formation of Environment for the Zone of Argillization in the Contemporary Hydrothermal Systems and Solfataric Fields,” Vulkanol. Seismol. 2, 64–74 (1984).

    Google Scholar 

  12. J. D. Keasling, S. J. van Dien, P. Trelstaad, et al., “Application of Polyphosphate Metabolism to Environmental and Biotechnological Problems,” Biokhimia 65, 394–404 (2000) (and other papers in this special issue).

    Google Scholar 

  13. A. H. Knoll, Life on a Young Planet (Princeton Univ. Press., 2003).

  14. W. E. Krumbein, D. M. Paterson, and L. J. Stal (Eds.), Biostabilization of Sediments: Microbially Mediated Processes in Tide Influenced Deposits and Their Importance in Stabilization and Diagenesis of Sediments (Oldenburg, Universität, 1994).

    Google Scholar 

  15. W. E. Krumbein, D. M. Paterson, and G. A. Zavarzin (Eds.), Fossil and Recent Biofilms: A Natural History of Life on Earth (Kluwer Acad., Dordrecht, 2003).

    Google Scholar 

  16. E. V. Kupriyanova, A. G. Markelova, and N. V. Lebedeva, “Carbonic Anhydrase of the Alkaliphilic Cyanobacterium Microcoleus chthonoplastes,” Microbiology 73, 307–311 (2004).

    Article  Google Scholar 

  17. V. A. Melezhik, A. E. Fallick, V. V. Makarikhin, and V. V. Lyubtsov, “Links between Paleoproterozoic Paleogeography and Rise and Decline of Stromatolites: Fennoscandian Shield,” Precambr. Res. 82, 311–348 (1997).

    Article  Google Scholar 

  18. V. A. Melezhik, A. E. Fallick, P. V. Medvedev, and V. V. Makarikhin, “Paleoproterozoic Magnesite: Lithological and Isotopic Evidence for Playa/Sabkha Environments,” Sedimentology 48, 379–397 (2001).

    Article  Google Scholar 

  19. V. A. Melezhik, A. E. Fallick, D. V. Rychanchik, and A. B. Kuznetzov, “Palaeoproterozoik Evaporates in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the σ13C Excursion,” Terra Nova 17, 141–148 (2005).

    Article  Google Scholar 

  20. M. L. Miroshnichenko, “Thermophilic Microbial Communities of Deep-sea Hydrotherms, Review,” Mikrobiologiya 73, 5–18 (2004).

    Google Scholar 

  21. V. R. Phoenix, K. O. Konhauser, D. G. Adams, and S. H. Botrell, “Role of Biomineralzation As an Ultraviolet Shield: Implications for Achaean Life,” Geology 29(9), 823–826 (2001).

    Article  Google Scholar 

  22. G. J. Retallack, Soils of the Past: An Introduction to Paleopedology (Unwyn Hyman, Boston, 1990).

    Google Scholar 

  23. M. Schidlowski, “Sedimentary Carbon Isotope Archives As Recorders of Early Life: Implications for Extraterrestrial Scenarios,” in Fundamentals of Life (Elsevier, 2002), pp. 308–329.

  24. D. W. Schwartzman, Life, Temperature, and the Earth: The Self-organizing Biosphere (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  25. V. N. Sergeev, L. M. Gerasimenko, and G. A. Zavarzin, “Proterozoic History and Present State of Cyanobacteria,” Mikrobiologiya 71(6), 725–40 (2002).

    Google Scholar 

  26. M. Sharma and V. N. Sergeev, “Genesis of Carbonate Precipitate Patterns and Associated Microfossils in Mesoproterozoic Formations of India and Russia—A Comparative Study,” Precambr. Res. 134, 317–347 (2004).

    Article  Google Scholar 

  27. A. I. Slobodkin, V. A. Eroschew-Shakh, N. A. Kostrikina, et al., “The Formation of Magnetite by Thermophilic Anaerobic Microorganisms,” Dokl. Akad. Nauk 345, 694–697 (1995).

    Google Scholar 

  28. L. J. Stal and P. Caumette (Eds.), “Microbial Mats: Structure, Development and Environmental Significance,” NATO ASI G 35, 443–452 (1994).

  29. V. A. Svetlichny, T. G. Sokolova, M. Gerchardt, et al., “Carboxydothermus hydrogenoformans gen. nov., sp. nov. a New CO-utilizing Thermophilic Anaerobic Bacterium from Hydrothermal Environments of Kunashir Island,” System. Appl. Microbiol. 14, 254–260 (1991).

    Google Scholar 

  30. F. Westall and F. D. Drake, “Is Life Unavoidable Planetary Phenomenon Given the Right Conditions?,” in Dahlem Koferenzien 91: Earth System Analysis for Sustainability (MIT Press Cambridge Massachusets, London UK, 2004), pp. 53–72.

    Google Scholar 

  31. F. Westall, M. J. de Witt, J. de Ronde, and D. Gerneke, “Early Archean Fossil Bacteria and Biofilms in Hydrothermally-influenced Sediments from the Barberton Greenstone Belt, South Africa,” Precambr. Res. 106, 93–116 (2001).

    Article  Google Scholar 

  32. W. D. Whitman, D. C. Coleman, and W. J. Wiebe, “Prokaryotes: The Unseen Majority,” Proc. Nat. Acad. Sci. 95(12), 6578–6583 (1998).

    Article  Google Scholar 

  33. C. R. Woese, “A New Biology for a New Century,” Microbiol. Molec. Biol. Rev. 68(2), 173–186 (2004).

    Article  Google Scholar 

  34. G. A. Zavarzin, Bacteria and the Composition of the Atmosphere (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  35. G. A. Zavarzin, “Epicontinental Soda Lakes As Supposed Relict Biotopes for the Formation of Terrestrial Biota, Mikrobiologiya 62(5), 789–800 (1993).

    Google Scholar 

  36. G. A. Zavarzin, “Diversity of Cyanobacterial Mats,” in Fossil and Recent Biofilms: A Natural History of Life on Earth (Kluwer Acad., Dordrecht, 2003), pp. 141–150.

    Google Scholar 

  37. G. A. Zavarzin, “Coming-into-Being of the System of Biogeochemical Cycles,” Paleontol. J., No. 6, 16–24 (2003).

  38. G. A. Zavarzin, Lectures in Environmental Microbiology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  39. G. A. Zavarzin, L. M. Gerasimenko, and T. N. Zhilina, “Cyanobacterial Communities in Hypersaline Lagoons of Lake Sivash,” Mikrobiologiya 62(6), 579–599 (1993).

    Google Scholar 

  40. G. A. Zavarzin, G. A. Karpov, V. M. Gorlenko, et al., Calderic Microorganisms (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  41. G. A. Zavarzin and T. N. Zhilina, “Anaerobic Chemotrophic Alkaliphiles,” in Jurney to Diverse Microbial Worlds (Kluwer Acad., The Netherlands, 2000), pp. 191–208.

    Google Scholar 

  42. G. A. Zavarzin, T. N. Zhilina, and V. V. Kevbrin, “The Alkaliphilic Microbial Community and Its Functional Diversity,” Mikrobiologiya 68(5), 503–521 (1999).

    Google Scholar 

  43. D. G. Zavarzina, “The Formation of Magnetite and Siderite by Thermophilic Fe(III)-Reducing Bacteria,” Paleontol. J. 38(6), 585–589 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavarzin, G.A. Microbial biopshere. Paleontol. J. 40, S425–S433 (2006). https://doi.org/10.1134/S0031030106100029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030106100029

Keywords

Navigation