Skip to main content
Log in

Measurement of Two-Photon Absorption Coefficient of 1030 nm Ultrashort Laser Pulses on Natural Diamond Color Centers

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An experimental study of nonlinear absorption process of ultrashort laser pulses in bulk of natural diamond has been carried out. The results of experimental studies on measuring nonlinear transmission of 1 mm thick plane-parallel plate made of diamond irradiated with focused by micro lens (NA = 0.55 with focal length f ' = 5 mm) 0.3 and 10 ps laser pulses with 1030 nm wavelength are presented. It is shown that in this sample the main attenuation mechanism of ultrashort laser pulses with 1030 nm wavelength at intensities not exceeding 10 TW/cm2 is two-photon absorption at color centers, the absorption coefficient β2 = 4.1 ± 0.3 cm/TW is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde. Phys. Rev. Lett., 97 (23), 237403 (2006). https://doi.org/10.1103/PhysRevLett.97.237403

  2. A. Joglekar, H. Liu, E. Meyhofer, G. Mourou, A. J. Hunt. Proceedings of the National Academy of Sciences, 101 (16), 5856 (2004). https://doi.org/10.1073/pnas.0307470101

    Article  ADS  Google Scholar 

  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry. Phys. Rev. B, 53 (4), 1749 (1996). https://doi.org/10.1103/PhysRevB.53.1749

    Article  ADS  Google Scholar 

  4. N. M. Bulgakova, R. Stoyan, A. Rosenfeld, I. V. Hertel, E. E. B. Campbell. Phys. Rev. B, 69 (5), 054102 (2004). https://doi.org/10.1103/PhysRevB.69.054102

  5. L. Cerami, E. Mazur, S. Nolte, C. B. Schaffer. Ultrafast nonlinear optics (Springer, Heidelberg, 2013), pp. 287–321. https://doi.org/10.1007/978-3-319-00017-6_12

    Book  Google Scholar 

  6. K. C. Phillips, H. H. Gandhi, E. Mazur, S. K. Sundaram. Advances in Optics and Photonics, 7 (4), 684 (2015). https://doi.org/10.1364/AOP.7.000684

    Article  ADS  Google Scholar 

  7. F. Chen, J. V. de Aldana. Laser Photonics Rev., 8 (2), 251 (2014). https://doi.org/10.1002/lpor.201300025

    Article  ADS  Google Scholar 

  8. D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, I. N. Saraeva, E. D. Startseva, R. A. Khmelnitskii. JETP Letters, 103 (5), 309 (2016). https://doi.org/10.1134/S0021364016050143

    Article  ADS  Google Scholar 

  9. G. K. Krasin, S. I. Kudryashov, P. A. Danilov, N. A. Smirnov, A. O. Levchenko, M. S. Kovalev. The Europ. Phys. J. D, 75 (8), 1 (2021). https://doi.org/10.1140/epjd/s10053-021-00234-0

    Article  Google Scholar 

  10. S. Kudryashov, P. Danilov, N. Smirnov, A. Levchenko, M. Kovalev, Y. Gulina, O. Kovalchuk, A. Ionin. Optical Materials Express, 11 (8), 2505 (2021). https://doi.org/10.1364/OME.427788

    Article  ADS  Google Scholar 

  11. S. Kudryashov, P. Danilov, A. Rupasov, S. Khonina, A. Nalimov, A. Ionin, G. Krasin, M. Kovalev. Optical Materials Express, 10 (12), 3291 (2020). https://doi.org/10.1364/OME.412399

    Article  ADS  Google Scholar 

  12. T. Roth, R. Laenen. Optics Commun., 189 (4–6), 289 (2001). https://doi.org/10.1016/S0030-4018(01)01037-9

  13. S. Preuss, M. Stuke. Appl. Phys. Lett., 67 (3), 338 (1995). https://doi.org/10.1063/1.115437

    Article  ADS  Google Scholar 

  14. S. V. Gagarskii, K. V. Prikhod’ko. J. Opt. Technology, 75 (3), 139 (2008). https://doi.org/10.1364/JOT.75.000139

    Article  Google Scholar 

  15. P. Simon, H. Gerhardt, S. Szatmari. Opt. Lett., 14 (21), 1207 (1989). https://doi.org/10.1364/OL.14.001207

    Article  ADS  Google Scholar 

  16. S. I. Kudryashov, A. O. Levchenko, P. A. Danilov, N. A. Smirnov, A. A. Ionin. Opt. Lett., 45 (7), 2026 (2020). https://doi.org/10.1364/OL.389348

    Article  ADS  Google Scholar 

  17. M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, E. W. Van Stryland. Laser-Induced Damage in Optical Materials, 2428, 605 (1995). https://doi.org/10.1117/12.213706

    Article  Google Scholar 

  18. Y. Dumeige, F. Treussart, R. Alleaume, T. Gacoin, J.‑F. Roch, P. Grangier. J. Lumen., 109 (2), 61 (2004). https://doi.org/10.1016/j.jlumin.2004.01.020

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 21-79-30063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Gulina.

Ethics declarations

The author of this work declares that she has no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulina, Y.S. Measurement of Two-Photon Absorption Coefficient of 1030 nm Ultrashort Laser Pulses on Natural Diamond Color Centers. Opt. Spectrosc. 131, 986–989 (2023). https://doi.org/10.1134/S0030400X23100089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X23100089

Keywords:

Navigation