Skip to main content
Log in

High-Resolution Spectroscopy of Asymmetric Top Molecules in Non-Singlet Electronic States: ν1 + ν3 Band of the ClO2 Molecule

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using a Bruker IFS 125 HR Fourier spectrometer, the high-resolution spectrum of the 16O35Cl16O molecule is recorded in the region of the \({{\nu }_{1}} + {{\nu }_{3}}\) band, in which more than 2000 transitions with the maximum quantum numbers Nmax = 59 and \(K_{a}^{{\max }}\) = 16 are identified. The obtained experimental data are analyzed based on the model from the work [Phys. Chem. Chem. Phys. 23 (8), 4580–4596 (2021)], which takes into account the existence of spin-rotational interactions in the molecule. The root-mean-square deviation of rotational–vibrational energies from the calculated values for the (101) state was \({{d}_{{{\text{rms}}}}}\) = 2.5 × 10–4 cm–1, which is 35 times better than the data known from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Solomon, Rev. Geophys. 26, 131 (1988). https://doi.org/10.1029/RG026i001p00131

    Article  ADS  Google Scholar 

  2. V. Vaida, S. Solomon, E. C. Richard, E. Ruhl, and A. Jefferson, Nature (London, U.K.) 342, 405 (1988). https://doi.org/10.1038/342405a0

    Article  ADS  Google Scholar 

  3. T. Canty, E. D. Rivière, R. J. Salawitch, G. Berthet, J.‑B. Renard, K. Pfeilsticker, M. Dorf, A. Butz, H. Bösch, R. M. Stimpfle, D. M. Wilmouth, E. C. Richard, D. W. Fahey, P. J. Popp, M. R. Schoeberl, L. R. Lait, and T. P. Bui, J. Geophys. Res. 110, D01301 (2005). https://doi.org/10.1029/2004JD005035

    Article  ADS  Google Scholar 

  4. R. F. Curl, Jr., R. F. Heidelberg, and J. L. Kinsey, Phys. Rev. 125, 1993 (1993). https://doi.org/10.1103/PhysRev.125.1993

    Article  ADS  Google Scholar 

  5. R. F. Curl, Jr., J. Chem. Phys. 37, 779 (1962). https://doi.org/10.1063/1.1733160

    Article  ADS  Google Scholar 

  6. M. G. Krishna Pillai and R. F. Curl, Jr., J. Chem. Phys. 37, 2921 (1962). https://doi.org/10.1063/1.1733118

    Article  ADS  Google Scholar 

  7. W. M. Tolles, J. L. Kinsey, R. F. Curl, Jr., and R. F. Heidelberg, J. Chem Phys. 37, 927 (1962). https://doi.org/10.1063/1.1733247

    Article  ADS  Google Scholar 

  8. J. C. D. Brand, R. W. Redding, and A. W. Richardson, J. Mol. Spectrosc. 34, 399 (1970). https://doi.org/10.1016/0022-2852(70)90023-8

    Article  ADS  Google Scholar 

  9. R. F. Curl, Jr., K. Abe, J. Bissinger, C. Bennett, and F. K. Tittel, J. Mol. Spectrosc. 48, 72 (1973). https://doi.org/10.1016/0022-2852(73)90136-7

    Article  ADS  Google Scholar 

  10. Y. Hamada, A. J. Merer, S. Michielsen, and S. A. Rice, J. Mol. Spectrosc. 86, 499 (1981). https://doi.org/10.1016/0022-2852(81)90297-6

    Article  ADS  Google Scholar 

  11. A. H. Nielsen and P. J. H. Woltz, J. Chem. Phys. 20, 1878 (1952). https://doi.org/10.1063/1.1700331

    Article  ADS  Google Scholar 

  12. A. W. Richardson, J. Mol. Spectrosc. 35, 34 (1970). https://doi.org/10.1016/0022-2852(70)90162-1

    Article  ADS  Google Scholar 

  13. C. P. Rinsland and D. C. Benner, J. Mol. Spectrosc. 112, 18 (1985). https://doi.org/10.1016/0022-2852(85)90187-0

    Article  ADS  Google Scholar 

  14. Y. Hamada and M. Tsuboi, Bull. Chem. Soc. Jpn. 52, 383 (1979). https://doi.org/10.1246/bcsj.52.383

    Article  Google Scholar 

  15. Y. Hamada and M. Tsuboi, J. Mol. Spectrosc. 83, 373 (1980). https://doi.org/10.1016/0022-2852(80)90062-4

    Article  ADS  Google Scholar 

  16. K. Tanaka and T. Tanaka, J. Mol. Spectrosc. 98, 425 (1983). https://doi.org/10.1016/0022-2852(83)90253-9

    Article  ADS  Google Scholar 

  17. J. Ortigoso, R. Escribano, J. B. Burkholder, and W. J. Lafferty, J. Mol. Spectrosc. 148, 346 (1991). https://doi.org/10.1016/0022-2852(91)90392-N

    Article  ADS  Google Scholar 

  18. J. Ortigoso, R. Escribano, J. B. Burkholder, and W. J. Lafferty, J. Mol. Spectrosc. 156, 89 (1992). https://doi.org/10.1016/0022-2852(92)90095-6

    Article  ADS  Google Scholar 

  19. J. Ortigoso, R. Escribano, J. B. Burkholder, and W. J. Lafferty, J. Mol. Spectrosc. 155, 25 (1992). https://doi.org/10.1016/0022-2852(92)90546-z

    Article  ADS  Google Scholar 

  20. J. Ortigoso, R. Escribano, J. B. Burkholder, and W. J. Lafferty, J. Mol. Spectrosc. 158, 347 (1993). https://doi.org/10.1006/jmsp.1993.1079

    Article  ADS  Google Scholar 

  21. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, M. Quack, K. B. Berezkin, C. Sydow, and S. Bauerecker, Phys. Chem. Chem. Phys. 23, 4580 (2021). https://doi.org/10.1039/d0cp05515h

    Article  Google Scholar 

  22. M. A. Merkulova, A. N. Kakaulin, O. V. Gromova, and E. S. Bekhtereva, Opt. Spectrosc. 129, 1138 (2021). https://doi.org/10.1134/S0030400X21080130

    Article  ADS  Google Scholar 

  23. J. K. G. Watson, J. Chem. Phys. 46, 1935 (1967). https://doi.org/10.1063/1.1840957

    Article  ADS  Google Scholar 

  24. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, S. Bauerecker, and V. M. Horneman, J. Mol. Spectrosc. 313, 4 (2015). https://doi.org/10.1016/j.jms.2015.04.008

    Article  ADS  Google Scholar 

  25. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, I. B. Bolotova, I. A. Konov, V. M. Horneman, and C. Leroy, J. Quant. Spectrosc. Radiat. Transfer 113, 500 (2012). https://doi.org/10.1016/j.jqsrt.2012.01.006

    Article  ADS  Google Scholar 

  26. O. N. Ulenikov, A. W. Liu, E. S. Bekhtereva, O. V. Gromova, L. Y. Hao, and S. M. Hu, J. Mol. Spectrosc. 226, 57 (2004). https://doi.org/10.1016/j.jms.2004.03.014

    Article  ADS  Google Scholar 

  27. O. N. Ulenikov, E. S. Bekhtereva, Y. V. Krivchikova, Y. B. Morzhikova, T. Buttersack, C. Sydow, and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer 166, 13 (2015). https://doi.org/10.1016/j.jqsrt.2015.07.004

    Article  ADS  Google Scholar 

  28. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, K. B. Berezkin, E. A. Sklyarova, C. Maul, and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer 161, 180 (2015). https://doi.org/10.1016/j.jqsrt.2015.04.008

    Article  ADS  Google Scholar 

  29. O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva, S. Alanko, M. Koivusaari, and R. Anttila, J. Mol. Spectrosc. 186, 293 (1997). https://doi.org/10.1006/jmsp.1997.7431

    Article  ADS  Google Scholar 

  30. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, S. Alanko, V. M. Horneman, and C. Leroy, Mol. Phys. 108, 1253 (2010). https://doi.org/10.1080/00268970903468297

    Article  ADS  Google Scholar 

  31. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. I. Raspopova, P. G. Sennikov, M. A. Koshelev, and A. D. Bulanov, J. Quant. Spectrosc. Radiat. Transfer 144, 11 (2014). https://doi.org/10.1016/j.jqsrt.2014.03.025

    Article  ADS  Google Scholar 

  32. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. I. Raspopova, N. V. Kashirina, A. L. Fomchenko, and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer 203, 496 (2017). https://doi.org/10.1016/j.jqsrt.2017.03.020

    Article  ADS  Google Scholar 

  33. M. A. Koshelev, A. P. Velmuzhov, I. A. Velmuzhova, P. G. Sennikov, N. I. Raspopova, E. S. Bekhtereva, and O. N. Ulenikov, J. Quant. Spectrosc. Radiat. Transfer 164, 161 (2015). https://doi.org/10.1016/j.jqsrt.2015.06.003

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-22-00171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Bekhtereva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhtereva, E.S., Kakaulin, A.N., Merkulova, M.A. et al. High-Resolution Spectroscopy of Asymmetric Top Molecules in Non-Singlet Electronic States: ν1 + ν3 Band of the ClO2 Molecule. Opt. Spectrosc. 130, 425–432 (2022). https://doi.org/10.1134/S0030400X22080021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22080021

Keywords:

Navigation