Skip to main content
Log in

On the Experimental Determination of 4f–4f Intensity Parameters from the Emission Spectra of Europium (III) Compounds

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Eu3+ complexes and specially β-diketonate compounds are well known and studied in several areas due to their luminescence properties, such as sensors and lightning devices. A unique feature of the Eu3+ ion is the experimental determination of the 4f–4f intensity parameters Ωλ directly from the emission spectrum. The equations for determining Ωλ from the emission spectra are different for the detection of emitted power compared to modern equipment that detects photons per second. It is shown that the differences between Ωλ determined by misusing the equations are sizable for Ω4 (ca. 15.5%) for several Eu3+β-diketonate complexes and leads to differences of ca. 5% in the intrinsic quantum yields \({\text{Q}}_{{{\text{Ln}}}}^{{{\text{Ln}}}}\). Due to the unique features of trivalent lanthanide ions, such as the shielding of 4f-electrons, which lead to small covalency and crystal field effects, a linear correlation was observed between Ωλ obtained using the emitted power and photon counting equations. We stress that care should be exercised with the type of detection should be taken and provide the correction factors for the intensity parameters. In addition, we suggest that the integrated intensity (proportional to the areas of the emission band) and the centroid (or barycenter) of the transition for obtaining Ωλ should be determined in the properly Jacobian-transformed spectrum in wavenumbers (or energy). Due to the small widths of the emission bands of typical 4f–4f transitions, the areas and centroids of the bands do not depend on the transformation within the experimental uncertainties. These assessments are relevant because they validate previously determined Ωλ without the proper spectral transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. G. Bispo, Jr., L. F. Saraiva, S. A. M. Lima, A. M. Pires, and M. R. Davolos, J. Lumin. 237, 118167 (2021).

    Article  Google Scholar 

  2. J.-C. G. C. G. Bünzli and C. Piguet, Chem. Soc. Rev. 34, 1048 (2005).

    Article  Google Scholar 

  3. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, Chem. Rev. 99, 2293 (1999).

    Article  Google Scholar 

  4. M. N. Popova, E. P. Chukalina, B. Z. Malkin, and S. K. Saikin, Phys. Rev. B 61, 7421 (2000).

    Article  ADS  Google Scholar 

  5. N. Agladze, M. Popova, G. Zhizhin, V. Egorov, and M. Petrova, Phys. Rev. Lett. 66, 477 (1991).

    Article  ADS  Google Scholar 

  6. B. Z. Malkin, A. R. Zakirov, M. N. Popova, S. A. Klimin, E. P. Chukalina, E. Antic-Fidancev, P. Goldner, P. Aschehoug, and G. Dhalenne, Phys. Rev. B 70, 075112 (2004).

    Article  ADS  Google Scholar 

  7. N. I. Agladze and M. N. Popova, Solid State Commun. 55, 1097 (1985).

    Article  ADS  Google Scholar 

  8. M. N. Popova, S. A. Klimin, E. P. Chukalina, E. A. Romanov, B. Z. Malkin, E. Antic-Fidancev, B. V. Mill, and G. Dhalenne, Phys. Rev. B 71, 024414 (2005).

    Article  ADS  Google Scholar 

  9. G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Coord. Chem. Rev. 196, 165 (2000).

    Article  Google Scholar 

  10. H. F. Brito, O. M. L. Malta, M. C. F. C. Felinto, and E. E. de S. Teotonio, in The Chemistry of Metal Enolates, Ed. by J. Zabicky, 1st ed. (Wiley, Chichester, 2009), p. 131.

    Google Scholar 

  11. A. N. Carneiro Neto, E. E. S. Teotonio, G. F. de Sá, H. F. Brito, J. Legendziewicz, L. D. Carlos, M. C. F. C. Felinto, P. Gawryszewska, R. T. Moura, Jr., R. L. Longo, W. M. Faustino, and O. L. Malta, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by J.-C. G. Bünzli and V. K. Pecharsky (Elsevier, Amsterdam, 2019), Vol. 56, p. 55.

    Google Scholar 

  12. I. P. Assunção, A. N. Carneiro Neto, R. T. Moura, C. C. S. Pedroso, I. G. N. Silva, M. C. F. C. Felinto, E. E. S. Teotonio, O. L. Malta, and H. F. Brito, Chem. Phys. Chem. 20, 1931 (2019).

    Article  Google Scholar 

  13. O. L. Malta, Chem. Phys. Lett. 87, 27 (1982).

    Article  ADS  Google Scholar 

  14. R. T. Moura, Jr., A. N. Carneiro Neto, R. L. Longo, and O. L. Malta, J. Lumin. 170, 420 (2016).

    Article  Google Scholar 

  15. P. R. S. Santos, D. K. S. Pereira, I. F. Costa, I. F. Silva, H. F. Brito, W. M. Faustino, A. N. Carneiro Neto, R. T. Moura, M. H. Araujo, R. Diniz, O. L. Malta, and E. E. S. Teotonio, J. Lumin. 226, 117455 (2020).

    Article  Google Scholar 

  16. D. O. A. Dos Santos, L. Giordano, M. A. S. G. Barbará, M. C. Portes, C. C. S. Pedroso, V. C. Teixeira, M. Lastusaari, and L. C. V. Rodrigues, Dalton Trans. 49, 16386 (2020).

    Article  Google Scholar 

  17. D. L. Fritzen, L. Giordano, L. C. V. Rodrigues, and J. H. S. K. Monteiro, Nanomaterials 10, 1 (2020).

    Article  Google Scholar 

  18. M. Suta and C. Wickleder, J. Lumin. 210, 210 (2019).

    Article  Google Scholar 

  19. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).

    Article  Google Scholar 

  20. J. Kai, M. C. F. C. Felinto, L. A. O. Nunes, O. L. Malta, and H. F. Brito, J. Mater. Chem. 21, 3796 (2011).

    Article  Google Scholar 

  21. L. B. Guimarães, A. M. P. Botas, M. C. F. C. Felinto, R. A. S. Ferreira, L. D. Carlos, O. L. Malta, and H. F. Brito, Mater. Adv. 1, 1988 (2020).

    Article  Google Scholar 

  22. A. S. Souza, L. A. O. Nunes, I. G. N. Silva, F. A. M. Oliveira, L. L. da Luz, H. F. Brito, M. C. F. C. Felinto, R. A. S. Ferreira, S. A. Júnior, L. D. Carlos, and O. L. Malta, Nanoscale 8, 5327 (2016).

    Article  ADS  Google Scholar 

  23. S. I. Weissman, J. Chem. Phys. 10, 214 (1942).

    Article  ADS  Google Scholar 

  24. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    Article  ADS  Google Scholar 

  25. B. R. Judd, Phys. Rev. 127, 750 (1962).

    Article  ADS  Google Scholar 

  26. C. K. Jørgensen and B. R. Judd, Mol. Phys. 8, 281 (1964).

    Article  ADS  Google Scholar 

  27. S. F. Mason, R. D. Peacock, and B. Stewart, Mol. Phys. 30, 1829 (1975).

    Article  ADS  Google Scholar 

  28. B. R. Judd, J. Chem. Phys. 70, 4830 (1979).

    Article  ADS  Google Scholar 

  29. O. L. Malta, H. J. Batista, and L. D. Carlos, Chem. Phys. 282, 21 (2002).

    Article  Google Scholar 

  30. O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. G. E. Silva, S. Alves, F. S. Farias, and A. V. M. de Andrade, J. Lumin. 75, 255 (1997).

    Article  Google Scholar 

  31. O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. G. E. Silva, C. D. Donega, and S. Alves, Chem. Phys. Lett. 282, 233 (1998).

    Article  ADS  Google Scholar 

  32. G. B. V. Lima, J. C. Bueno, A. F. da Silva, A. N. Carneiro Neto, R. T. Moura, E. E. S. Teotonio, O. L. Malta, and W. M. Faustino, J. Lumin. 219, 116884 (2020).

    Article  Google Scholar 

  33. H. Song, G. Liu, C. Fan, and S. Pu, J. Rare Earths 39, 460 (2021).

    Article  Google Scholar 

  34. D. Zhang, Y. Zhang, Z. Wang, Y. Zheng, X. Zheng, L. Gao, C. Wang, C. Yang, H. Tang, and Y. Li, J. Lumin. 229, 117706 (2021).

    Article  Google Scholar 

  35. R. Adati, J. Monteiro, L. Cardoso, D. de Oliveira, M. Jafelicci, and M. Davolos, J. Braz. Chem. Soc. 30, 1707 (2019).

    Google Scholar 

  36. E. E. S. Teotonio, H. F. Brito, M. C. F. C. Felinto, C. A. Kodaira, and O. L. Malta, J. Coord. Chem. 56, 913 (2003).

    Article  Google Scholar 

  37. C. Yang, J. Xu, J. Ma, D. Zhu, Y. Zhang, L. Liang, and M. Lu, Photochem. Photobiol. Sci. 12, 330 (2013).

    Article  Google Scholar 

  38. Z. Li, Z. Hou, D. Ha, and H. Li, Chem.—Asian J. 10, 2720 (2015).

    Article  Google Scholar 

  39. X. H. Zhao, K. L. Huang, F. P. Jiao, S. Q. Liu, Z. G. Liu, and S. Q. Hu, J. Phys. Chem. Solids 68, 1674 (2007).

    Article  ADS  Google Scholar 

  40. R. D. Adati, M. R. Davolos, M. Jafelicci, S. A. M. Lima, and C. Viegas, Phys. Status Solidi Curr. Top. Solid State Phys. 6, 7 (2009).

    Google Scholar 

  41. E. E. S. Teotonio, G. M. Fett, H. F. Brito, W. M. Faustino, G. F. de Sá, M. C. F. C. Felinto, and R. H. A. Santos, J. Lumin. 128, 190 (2008).

    Article  Google Scholar 

  42. H. Brito, O. Malta, and J. F. Menezes, J. Alloys Compd. 303–304, 336 (2000).

    Article  Google Scholar 

  43. J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013).

    Article  Google Scholar 

  44. J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 5, 3497 (2014).

    Article  Google Scholar 

  45. L. W. McDonald, J. A. Campbell, and S. B. Clark, Anal. Chem. 86, 1023 (2014).

    Article  Google Scholar 

  46. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF 3 (Argonne, IL, United States, 1978).

    Google Scholar 

  47. R. van Deun, K. Binnemans, C. Görller-Walrand, and J. L. Adam, J. Phys.: Condens. Matter 10, 7231 (1998).

    ADS  Google Scholar 

  48. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Brazilian funding agencies: Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). L. Blois is grateful to FAPESP for the Ph.D. scholarship (Grant 2020/16795-6). A.N. Carneiro Neto is thankful to SusPhotoSolutions—Soluções Fotovoltaicas Sustentáveis, CENTRO-01-0145-FEDER-000005. R.L. Longo is grateful for the partial financial support under grants: Pronex APQ-0675-1.06/14, INCT-NANOMARCS APQ-0549-1.06/17, APQ-1007-1.06/15, and CNPq-PQ fellowship (Grant 309177/2018-9). I.F. Costa is grateful to CNPq for his post doctorate scholarship (Grant 151623/2020-1). H.F. Brito is grateful to CNPq for the research grant (306951/2018-5). L. Blois also thanks Prof. Erick Bastos and Frank Quina (Instituto de Química—USP) for making the Edinburgh FLS980 Fluorometer available. The authors are thankful to the Analytical Central of the Institute of Chemistry (Central Analítica—IQUSP) for the elemental and mass spectrometry analyses. This paper is dedicated to Professor Marina Popova.

Author information

Authors and Affiliations

Authors

Contributions

L. Blois: Conceptualization, Methodology, Investigation, Formal Analysis, Visualization, Data Curation, Writing—original draft, Writing—review and editing. A.N. Carneiro Neto: Conceptualization, Methodology, Formal Analysis, Validation Writing—original draft, Writing— review and editing. R.L. Longo: Formal Analysis, Validation, Writing—original draft, Writing—review and editing. I.F. Costa: Methodology, Visualization, Data Curation, Writing—original draft, Writing—review and editing. T.B. Paolini: Methodology, Writing—review and editing. H.F. Brito: Conceptualization, Methodology, Visualization, Data Curation, Supervision, Funding Acquisition, Project Administration, Writing—original draft, Writing—review and editing. O.L. Malta: Conceptualization, Methodology, Formal Analysis, Visualization, Supervision, Writing—original draft, Writing—review and editing.

Corresponding authors

Correspondence to Hermi F. Brito or Oscar L. Malta.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blois, L., Neto, A.N., Longo, R.L. et al. On the Experimental Determination of 4f–4f Intensity Parameters from the Emission Spectra of Europium (III) Compounds. Opt. Spectrosc. 130, 10–17 (2022). https://doi.org/10.1134/S0030400X2201009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2201009X

Keywords:

Navigation