Skip to main content
Log in

Phonon Spectrum and Elastic Properties of Y2Sn2O7

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The phonon spectrum of yttrium stannate Y2Sn2O7 is calculated within a general ab initio approach and the frequencies and types of IR and Raman modes are determined. The degree of involvement of ions in phonon modes is determined from the analysis of displacement vectors calculated ab initio. The elastic constants and hardness of Y2Sn2O7 are calculated. The impurity ion–ligand distance in Y2Sn2O7:Yb3+, Y2Sn2O7:Eu3+, Lu2Sn2O7:Yb3+, Nd2Sn2O7:Gd3+, and Nd2Sn2O7:Tb3+ impurity centers is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. C. Hatnean, C. Decorse, M. R. Lees, O. A. Petrenko, and G. Balakrishnan, Crystals 6, 79 (2016). https://doi.org/10.3390/cryst6070079

    Article  Google Scholar 

  2. R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, and Z. Hu, J. Phys. Chem. Solids 118, 109 (2018). https://doi.org/10.1016/j.jpcs.2018.03.002

    Article  ADS  Google Scholar 

  3. J. Lian, J. Chen, L. M. Wang, R. C. Ewing, J. M. Farmer, L. A. Boatner, and K. B. Helean, Phys. Rev. B 68 (13) (2003). https://doi.org/10.1103/PhysRevB.68.134107

  4. A. M. Srivastava, Opt. Mater. 31, 881 (2009). https://doi.org/10.1016/j.optmat.2008.10.021

    Article  ADS  Google Scholar 

  5. D. Jina, X. Yu, H. Yang, H. Zhu, L. Wang, and Y. Zheng, J. Alloys Compd. 474, 557 (2009). https://doi.org/10.1016/j.jallcom.2008.06.159

    Article  Google Scholar 

  6. K. W. Li, H. Li, H. Zhang, R. Yu, H. Wang, and H. Yan, Mater. Res. Bull. 41, 191 (2006). https://doi.org/10.1016/j.materresbull.2005.07.018

    Article  Google Scholar 

  7. A. A. Saleh, H. Z. Hamamera, H. K. Khanfar, A. F. Qasrawi, and G. Yumusak, Mater. Sci. Semicond. Process. 88, 256 (2018). doi.org/https://doi.org/10.1016/j.mssp.2018.08.017

    Article  Google Scholar 

  8. M. Pandey, S. Nigam, V. Sudarsan, R. J. Kshirsagar, and R. K. Vatsa, AIP Conf. Proc. 1591, 432 (2014). doi.org/https://doi.org/10.1063/1.4872628

    Article  ADS  Google Scholar 

  9. C. Nayak, S. Nigam, M. Pandey, V. Sudarsan, C. Majumder, S. N. Jha, D. Bhatacharyya, R. K. Vasta, and R. J. Kshirsagar, Chem. Phys. Lett. 597, 51 (2014). dx.doi.org/https://doi.org/10.1016/j.cplett.2014.02.028

    Article  ADS  Google Scholar 

  10. J. Feng, B. Xiao, Z. X. Qu, R. Zhou, and W. Pan, Appl. Phys. Lett. 99 (2011). https://doi.org/10.1063/1.3659482

  11. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933

    Article  ADS  Google Scholar 

  12. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Science (Washington, DC, U. S.) 355, 49 (2017). https://doi.org/10.1126/science.aah5975

    Article  ADS  Google Scholar 

  13. V. V. Karpov, A. V. Bandura, and R. A. Evarestov, Phys. Solid State 62, 1017 (2020). https://doi.org/10.1134/S1063783420060116

    Article  ADS  Google Scholar 

  14. Y. N. Zhuravlev and V. V. Atuchin, Nanomaterials 10 (2020). https://doi.org/10.3390/nano10112275

  15. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlo, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, et al., CRYSTAL17 User’s Manual. http://www.crystal.unito.it/index.php.

  16. http://www.crystal.unito.it/index.php.

  17. F. Cora, Mol. Phys. 103, 2483 (2005). https://doi.org/10.1080/00268970500179651

    Article  ADS  Google Scholar 

  18. G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, and R. Dovesi, Systematic Influence of Atomic Substitution on the Phase Diagram of ABO3 Ferroelectric Perovskites. http://www.crystal.unito.it/Basis_Sets/tin.html. Accessed 2014.

  19. J. Laun, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 39, 1285 (2018).https://doi.org/10.1002/jcc.25195

  20. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theor. Chim. Acta 75, 173 (1989). https://doi.org/10.1007/BF00528565

    Article  Google Scholar 

  21. M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 85, 441 (1993). https://doi.org/10.1007/BF01112983

    Article  Google Scholar 

  22. J. Yang and M. Dolg, Theor. Chem. Acc. 113, 212 (2005). https://doi.org/10.1007/s00214-005-0629-0

    Article  Google Scholar 

  23. A. Weigand, X. Cao, J. Yang, and M. Dolg, Theor. Chem. Acc. 126, 117 (2009). https://doi.org/10.1007/s00214-009-0584-2

    Article  Google Scholar 

  24. Energy-Consistent Pseudopotentials of the Stuttgart. http://www.tc.uni-koeln.de/PP/clickpse.en.html.

  25. F. Pascale, C. M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, and R. Dovesi, J. Comput. Chem. 25, 888 (2004). https://doi.org/10.1002/jcc.20019

    Article  Google Scholar 

  26. R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. de la Pierre, P. D’Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014). https://doi.org/10.1002/qua.24658

    Article  Google Scholar 

  27. L. Maschio, B. Kirtman, R. Orlando, and M. Rerat, J. Chem. Phys. 137, 204113 (2012). https://doi.org/10.1063/1.4767438

    Article  ADS  Google Scholar 

  28. P. Labeguerie, F. Pascale, M. Merawa, C. Zicovich-Wilson, N. Makhouki, and R. Dovesi, Eur. Phys. J. B 43, 453 (2005). https://doi.org/10.1140/epjb/e2005-00078-6

    Article  ADS  Google Scholar 

  29. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

    Article  Google Scholar 

  30. A. Ambrosini, A. Duarte, K. P. Poeppelmeier, M. Lane, C. R. Kannewurf, and T. O. Mason, J. Solid State Chem. 153, 41 (2000). https://doi.org/10.1006/jssc.2000.8737

    Article  ADS  Google Scholar 

  31. B. J. Kennedy, B. A. Hunter, and C. J. Howard, J. Solid State Chem. 130, 58 (1997). https://doi.org/10.1006/jssc.1997.7277

    Article  ADS  Google Scholar 

  32. F. Brisse and O. Knop, Canad. J. Chem. 46, 859 (1968). https://doi.org/10.1139/v68-148

    Article  Google Scholar 

  33. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34, 451 (2013). https://doi.org/10.1002/jcc.23153

    Article  Google Scholar 

  34. M. Douma, El. H. Chtoun, R. Trujillano, and V. Rives, Proc. Appl. Ceram. 4, 237 (2010). https://doi.org/10.2298/PAC1004237D

    Article  Google Scholar 

  35. J. F. McCaffrey, N. T. McDevitt, and C. M. Phillippi, J. Opt. Soc. Am. 61, 209 (1971).https://doi.org/10.1364/JOSA.61.000209

    Article  ADS  Google Scholar 

  36. http://jmol.sourceforge.net/.

  37. D. V. Korabelnikov and Yu. N. Zhuravlev, Phys. Solid State 58, 1166 (2016). https://doi.org/10.1134/S1063783416060251

    Article  ADS  Google Scholar 

  38. X. Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011). https://doi.org/10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  39. Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021

    Article  Google Scholar 

  40. http://progs.coudert.name/elate.

  41. B. Z. Malkin, in Spectroscopy of Solids Containing Rare-Earth Ions, Ed. by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987), p. 13.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the Uran supercomputer at the N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0054 and theme “Kvant,” project no. АААА-А18-118020190095-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chernyshev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, V.A., Glukhov, K.I. & Agzamova, P.A. Phonon Spectrum and Elastic Properties of Y2Sn2O7. Opt. Spectrosc. 129, 1074–1083 (2021). https://doi.org/10.1134/S0030400X21080051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21080051

Keywords:

Navigation