Skip to main content
Log in

Holographic Optical Components Based on Photorefractive Crystals and Glasses: Comparative Analysis and Development Prospects

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A survey of original results of studying optical and holographic properties of two kinds of photosensitive materials used in present-day optical holography—doped crystals of lithium niobate and photothermorefractive glasses—is presented. A comparative analysis of main holographic characteristics of these materials is given. Advantages and disadvantages of photothermorefractive glasses and lithium niobate crystals are shown along with most significant examples of their practical applications in photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. R. Klein, Proc. IEEE 54, 803 (1966).

    Google Scholar 

  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

    Google Scholar 

  3. A. V. Gleǐm, V. V. Chistyakov, and O. I. Bannik, J. Opt. Technol. 84, 362 (2017). https://doi.org/10.1364/JOT.84.000362

    Article  Google Scholar 

  4. A. P. Pogoda, A. A. Sergeev, I. S. Khakhalin, E. V. Popov, N. L. Istomina, A. S. Boreisho, and V. M. Petrov, Quantum Electron. 50, 658 (2020).

    ADS  Google Scholar 

  5. J. E. Pierson and S. D. Stokey, US Patent No. 4017318 (1977).

  6. J. E. Pierson and S. D. Stokey, US Patent No. 4057408 (1977).

  7. S. D. Stokey, G. H. Beal, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).

    ADS  Google Scholar 

  8. A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, and I. V. Tunimanova, Phys. Chem. Glass 11, 592 (1985).

    Google Scholar 

  9. E. I. Panysheva, I. V. Tunimanova, and V. A. Tsehomskii, Phys. Chem. Glass 16, 239 (1990).

    Google Scholar 

  10. N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, in Holographic Materials and Optical Systems, Ed. by I. Nayadenova, D. Nazarova, and T. Babeva (InTech, Rijeka, 2017), p. 435.

    Google Scholar 

  11. N. V. Nikonorov, E. I. Panysheva, V. V. Savin, and I. V. Tunimanova, in Proceedings of the All-Union Conference on Optical Image and Recording Media (GOI, Leningrad, 1990), Vol. 2, p. 48.

  12. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, V. V. Savvin, and V. A. Tsekhomskii, in Proceedings of the 7th All-Union Conference on Radiation Physics and Chemistry of Inorganic Materials (IF AN Latv. SSR, Riga, 1989), p. 527.

  13. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, V. V. Savvin, and V. A. Tsekhomskii, Sov. Phys. Dokl. 35, 878 (1990).

    ADS  Google Scholar 

  14. S. A. Kuchinskii, N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and V. V. Savvin, Opt. Spectrosc. 70, 1296 (1991).

    Google Scholar 

  15. L. B. Glebov, L. N. Glebova, K. A. Richardson, and V. I. Smirnov, in Proceedings of the 15th Congress on Glass (Am. Ceram. Soc., San Francisco, 1998).

  16. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. A. Richardson, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).

    ADS  Google Scholar 

  17. L. B. Glebov, Proc. SPIE 6545, 654507 (2007).

    Google Scholar 

  18. N. Nikonorov, V. Aseev, V. Dubrovin, A. Ignatiev, S. Ivanov, Y. Sgibnev, and A. Sidorov, in Optics, Photonics and Laser Technology, Ed. by P. Ribeiro and M. Raposo, Springer Ser. Opt. Sci. 218, 83 (2018).

  19. Y. Sgibnev, N. Nikonorov, V. N. Vasilev, and A. Ignatiev, J. Lightwave Technol. 33, 3730 (2015).

    ADS  Google Scholar 

  20. Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilev, and M. Sorokina, Opt. Express 24, 4563 (2016).

    ADS  Google Scholar 

  21. V. Aseev and N. Nikonorov, J. Opt. Technol. 75, 676 (2008).

    Google Scholar 

  22. N. V. Nikonorov, D. A. Ivanov, I. S. Kozlova, and I. S. Pichugin, Proc. SPIE 10233, 102330 (2017).

    Google Scholar 

  23. K. Nasser, V. Aseev, S. Ivanov, A. Ignatiev, and N. Nikonorov, J. Lumin. 213, 255 (2019).

    Google Scholar 

  24. Y. Sgibnev, B. Asamoah, N. Nikonorov, and S. Honkanen, J. Lumin. 226, 117411 (2020).

    Google Scholar 

  25. https://optigrate.com.

  26. S. Ivanov, V. Dubrovin, N. Nikonorov, M. Stolyarchuk, and A. Ignatiev, J. Non-Cryst. Solids 521, 119496 (2019).

    Google Scholar 

  27. V. Dubrovin, N. Nikonorov, and A. Ignatiev, Opt. Mater. Express 7, 2280 (2017).

    ADS  Google Scholar 

  28. D. Klyukin, V. Krykova, S. Ivanov, P. Obraztsov, M. Silvenionen, and N. Nikonorov, Opt. Mater. Express 7, 4131 (2017).

    ADS  Google Scholar 

  29. S. Ivanov, N. Nikonorov, V. Ignat’ev, V. V. Zolotarev, Ya. V. Lublanskiy, N. A. Pikhtin, and I. S. Tarasov, Semiconductors 50, 819 (2016).

    ADS  Google Scholar 

  30. A. E. Angervaks, K. S. Gorokhovskii, V. A. Granovskii, V. B. Doan, and S. A. Ivanov, Opt. Spectrosc. 123, 970 (2017).

    ADS  Google Scholar 

  31. V. A. Ivanov, A. E. Angervaks, A. S. Shcheulin, A. I. Ignatiev, and N. V. Nikonorov, Opt. Spectrosc. 117, 971 (2014).

    ADS  Google Scholar 

  32. S. Odinokov, M. Shishova, V. Markin, A. Zherdev, D. Lushnikov, A. Solomatenko, D. Kuzmin, N. Nikonorov, and S. Ivanov, Opt. Express 28, 17581 (2020).

    ADS  Google Scholar 

  33. F. C. Chen, T. Macchia, and D. F. Fraser, Appl. Phys. Lett. 13, 225 (1968).

    ADS  Google Scholar 

  34. V. V. Kulikov and S. I. Stepanov, Sov. Phys. Solid State 21, 1849 (1979).

    Google Scholar 

  35. V. I. Bobrinev, Z. G. Vasil’eva, E. Kh. Gulanyan, and A. L. Mikaelyan, JETP Lett. 18, 159 (1973).

    ADS  Google Scholar 

  36. V. V. Kulikov, M. P. Petrov, and S. I. Stepanov, Avtometriya, No. 1, 39 (1980).

  37. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

    Google Scholar 

  38. Yu. S. Kuz’minov, Lithium Niobate and Tantalate. Materials for Nonlinear Optics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  39. V. M. Petrov and A. V. Shamrai, Interference and Diffraction for Information Photonics (Lan’, St. Petersburg, 2019) [in Russian].

  40. V. M. Petrov and A. V. Shamrai, Phys. Usp. (2020, in press). https://doi.org/10.3367/UFNr.2020.11.038871

  41. E. Kratzig and H. Kurz, Opt. Acta 24, 475 (1977).

    ADS  Google Scholar 

  42. Y. Ohmori, Y. Yasojima, and Y. Inuish, Tech. Rep. Osaka Univ. 24 (1166), 105 (1974).

    Google Scholar 

  43. Y. Ohmori, Y. Yasojima, and Y. Inuish, Jpn. J. Appl. Phys. 14, 1291 (1975).

    ADS  Google Scholar 

  44. V. A. Pashkov, N. M. Solov’eva, and V. M. Uyukin, Sov. Phys. Solid State 21, 1079 (1979).

    Google Scholar 

  45. J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).

    ADS  Google Scholar 

  46. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).

    ADS  Google Scholar 

  47. B. I. Sturman and V. M. Fridkin, Photovoltaic Effect in Media without a Center of Symmetry and Related Phenomena (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  48. A. M. Glass, D. Linde, and D. H. Auston, J. Electron. Mater. 4, 915 (1975).

    ADS  Google Scholar 

  49. A. Ashkin, Appl. Phys. Lett. 9, 72 (1966).

    ADS  Google Scholar 

  50. M. P. Petrov, S. I. Stepanov, and A. A. Kamshilin, Ferroelectrics 21, 631 (1978).

    Google Scholar 

  51. J. P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).

    ADS  Google Scholar 

  52. M. P. Petrov, A. V. Shamrai, and V. M. Petrov, Phys. Solid State 40, 948 (1998).

    ADS  Google Scholar 

  53. M. P. Petrov, A. V. Shamray, V. M. Petrov, and J. Sanchez-Mondragon, Opt. Commun. 153, 305 (1998).

    ADS  Google Scholar 

  54. A. V. Shamrai, V. M. Petrov, and M. P. Petrov, Tech. Phys. 44, 1098 (1999).

    Google Scholar 

  55. S. Breer and K. Buse, Appl. Phys. B 66, 339 (1998).

    ADS  Google Scholar 

  56. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, Opt. Mater. 18, 191 (2001).

    ADS  Google Scholar 

  57. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, Appl. Phys. B 71, 43 (2000).

    ADS  Google Scholar 

  58. V. M. Petrov, Adaptive Holographic Interferometers for Nanomechanics (Lan’, St. Petersburg, 2018) [in Russian].

  59. V. M. Petrov, C. Karaboue, J. Petter, T. Tschudi, V. V. Bryksin, and M. P. Petrov, Appl. Phys. 76, 41 (2003).

    Google Scholar 

  60. V. M. Petrov, S. Lichtenberg, J. Petter, A. V. Chamrai, V. V. Bryksin, and M. P. Petrov, J. Opt. A: Pure Appl. Opt. 5, 471 (2003).

    Google Scholar 

  61. P. Arora, V. M. Petrov, J. Petter, and T. Tschudi, Opt. Commun. 281, 1455 (2008).

    ADS  Google Scholar 

  62. P. Arora, V. M. Petrov, J. Petter, and T. Tschudi, Opt. Commun. 281, 2067 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Petrov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonorov, N.V., Petrov, V.M. Holographic Optical Components Based on Photorefractive Crystals and Glasses: Comparative Analysis and Development Prospects. Opt. Spectrosc. 129, 530–537 (2021). https://doi.org/10.1134/S0030400X21040172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21040172

Keywords:

Navigation