Abstract
The main aim of this work was to perform low-temperature synthesis of glass-ceramics with YNbO4:Eu3+ crystallites and study the structural and luminescent properties of the samples synthesized. The inclusions crystallized in the ЅіО2–Na2О–K2O–Y2O3–Nb2O5–Eu2O3 (SiNaK) and B2O5–Na2О–Y2O3–Nb2O5–Eu2O3 (BNa) systems under the conditions of low-temperature synthesis were studied for the first time. It was shown that YNbO4:Eu3+ was crystallized in both systems under study. In the SiNaK system, SiO2 (quartz, cristobalite, and tridymite) was also crystallized under the chosen conditions. The BNa system was found to be most promising for the synthesis of doped glass-ceramics with YNbO4 because this system allows formation of only the desired crystallites. The luminescent properties of crystalline inclusions were studied by local cathodoluminescence. The glass-ceramics composition and structure were studied by X-ray spectral microanalysis and X-ray diffraction analysis.
Similar content being viewed by others
REFERENCES
A. Y. Mester, A. M. Mozharov, A. N. Trofimov, and M. V. Zamoryanskaya, Opt. Spectrosc. 120, 726 (2016). https://doi.org/10.1134/S0030400X16050192
M. Nazarov, Y. J. Kim, E. Y. Lee, K. I. Min, M. S. Jeong, S. W. Lee, and D. Y. Noh, J. Appl. Phys. 107, 103104 (2010). https://doi.org/10.1063/1.3392918
L. R. Dačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, J. Lumin. 151, 82 (2014). https://doi.org/10.1016/j.jlumin.2014.02.008
G. Blasse and A. Bril, J. Electrochem. Soc. 115, 1067 (1968).
G. Blasse and A. Bril, J. Lumin. 3, 109 (1970). https://doi.org/10.1016/0022-2313(70)90011-6
O. S. Dymshits, I. P. Alekseeva, A. A. Zhilin, M. Y. Tsenter, P. A. Loiko, N. A. Skoptsov, A. M. Malyarevich, K. V. Yumashev, X. Mateos, and A. V. Baranov, J. Lumin. 160, 337 (2015). https://doi.org/10.1016/j.jlumin.2014.12.040
P. A. Loiko, O. S. Dymshits, I. P. Alekseeva, A. A. Zhilin, M. Y. Tsenter, E. V. Vilejshikova, K. V. Bogdanov, X. Mateos, and K. V. Yumashev, J. Lumin. 179, 64 (2016). https://doi.org/10.1016/j.jlumin.2016.06.042
M. Hirano and H. Dozono, Mater. Res. Bull. 50, 213 (2014). https://doi.org/10.1016/j.materresbull.2013.10.041
S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, Opt. Mater. 62, 7 (2016). https://doi.org/10.1016/j.optmat.2016.09.032
K.-Y. Kim, A. Durand, J.-M. Heintz, A. Veillere, and V. Jubera, J. Solid State Chem. 235, 169 (2016). https://doi.org/10.1016/j.jssc.2015.12.023
A. M. G. Massabni, G. J. M. Montandon, and M. A. C. dos Santos, Mater. Res. 1, 1 (1998). https://doi.org/10.1590/S1516-14391998000100002
E. V. Ivanova, V. A. Kravets, K. N. Orekhova, G. A. Gu-sev, T. B. Popova, M. A. Yagovkina, O. G. Bogdanova, B. E. Burakov, and M. V. Zamoryanskaya, J. Alloys Compd. 808, 151778 (2019). https://doi.org/10.1016/j.jallcom.2019.151778
V. A. Kravets, K. N. Orekhova, M. A. Yagovkina, E. V. Ivanova, and M. V. Zamoryanskaya, Opt. Spectrosc. 125, 188 (2018). https://doi.org/10.1134/S0030400X18080167
F. Ya. Galakhov, State Diagrams of Refractory Oxide Systems, The Handbook (Nauka, Moscow, 1986), No. 5, Part 2 [in Russian].
M. V. Zamoryanskaya, S. G. Konnikov, and A. N. Za-moryanskii, Instrum. Exp. Tech. 47, 477 (2004). https://doi.org/10.1023/B:INET.0000038392.08043.d6
G. E. Malashkevich, A. G. Makhanek, A. V. Semchenko, V. E. Gaishun, I. M. Mel’nichenko, and E. N. Poddenezhnyi, Phys. Solid State 41, 202 (1999). https://doi.org/10.1134/1.1130755
M. Nogami and Y. Abe, Appl. Phys. Lett. 71, 3465 (1997). https://doi.org/10.1063/1.120361
H. You and M. Nogami, J. Appl. Phys. 95, 2781 (2004). https://doi.org/10.1063/1.1646433
V. A. Kravets, E. V. Ivanova, K. N. Orekhova, M. A. Petrova, G. A. Gusev, A. N. Trofimov, and M. V. Zamoryanskaya, J. Lumin., 117419 (2020). https://doi.org/10.1016/j.jlumin.2020.117419
V. D. Rodríguez, V. Lavín, U. R. Rodríguez-Mendoza, I. R. Martín, and P. Nuńtez, Radiat. Eff. Def. Solids 135, 105 (1995). https://doi.org/10.1080/10420159508229816
E. V. Ivanova and M. V. Zamoryanskaya, Phys. Solid State 58, 1962 (2016). https://doi.org/10.1134/S1063783416100188
ACKNOWLEDGMENTS
We are grateful to M.A. Yagovkina for XRD studies. The XRD studies were per performed using the equipment of the Federal Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies.”
Funding
This work was supported by the Ministry of Education and Science of the Russian Federation, (unique identifier RFMEFI62119X0021), by the Russian Foundation for Basic Research and the Belarusian Republic Foundation for Basic Research (project no. 19-52-04011), and by the Belarusian Republic Foundation for Basic Research (project Т19РМ-030).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Additional information
Translated by M. Basieva
Rights and permissions
About this article
Cite this article
Kravets, V.A., Ivanova, E.V., Orekhova, K.N. et al. Low-Temperature Synthesis of Glass-Ceramics with YNbO4:Eu3+ Crystallites. Opt. Spectrosc. 129, 245–251 (2021). https://doi.org/10.1134/S0030400X21020077
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0030400X21020077