Skip to main content
Log in

Density of Energy Spectrum of an Electron in the Image-Potential Field and a Trapping Electric Field

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Density of energy spectrum of an electron bound by an image-potential field and a trapping field near the surface of a metal is calculated in the quasi-classical approximation. The confinement mechanism realized in the system under consideration leads to a completely discrete energy spectrum of electron motion in the direction perpendicular to the metal surface. The density of energy spectrum is expressed in terms of elliptic integrals the argument of which represents a sigmoid function that transforms into a Heaviside step function when the field is turned off. A dimensionless energy parameter determining intervals characterized by qualitatively different variation of width of classically accessible region of motion is introduced. The density of spectrum asymptotically tends to that in a triangular potential with addition of a Coulomb logarithmic correction at large positive values of the energy parameter. At negative values of the energy parameter, the density of spectrum transforms into the dependence corresponding to a one-dimensional Coulomb potential. Approximate expressions that describe the density of spectrum in terms of elementary functions in a wide range of electron energies and electric-field strengths are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 391, L1217 (1997).

    Article  ADS  Google Scholar 

  2. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sanchet-Portal, V. M. Silkin, V. P. Zhukiv, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).

    Article  Google Scholar 

  3. P. M. Echenique and J. B. Pendry, Prog. Surf. Sci. 32, 111 (1990).

    Article  ADS  Google Scholar 

  4. W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).

    Article  ADS  Google Scholar 

  5. I. L. Shumay, U. Hofer, Ch. Reus, U. Thomann, W. Wallauer, and Th. Fauster, Phys. Rev. B 58, 13974 (1998).

    Article  ADS  Google Scholar 

  6. M. Marks, C. H. Schwalb, K. Schubert, J. Güdde, and U. Höfer, Phys. Rev. B 84, 245402 (2011).

    Article  ADS  Google Scholar 

  7. D. Niesner and T. Fauster, J. Phys.: Condens. Matter 26, 393001 (2014).

    Google Scholar 

  8. Y. Lin, Y. Li, J. T. Sadowski, W. Jin, J. I. Dadap, M. S. Hybertsen, and R. M. Osgood, Phys. Rev. B 97, 165413 (2018).

    Article  ADS  Google Scholar 

  9. D. Yildiz, M. Kisiel, U. Gysin, et al., Nat. Mater. 18, 1201 (2019).

    Article  ADS  Google Scholar 

  10. J.-F. Ge, H. Zhang, Y. He, Z. Zhu, Y. C. Yam, P. Chen, and J. E. Hoffman, Phys. Rev. B 101, 035152 (2020).

    Article  ADS  Google Scholar 

  11. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 118, 191 (2015).

    Article  ADS  Google Scholar 

  12. P. A. Golovinskii and M. A. Preobrazhenskii, Tech. Phys. Lett. 41, 720 (2015).

    Article  ADS  Google Scholar 

  13. Y. Gao, T. Drake, Z. Chen, and M. F. DeCamp, Opt. Lett. 33, 2776 (2000).

    Article  ADS  Google Scholar 

  14. P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchuk, and V. Goryashko, Phys. Rep. 836–837, 1 (2019).

    Article  ADS  Google Scholar 

  15. N. Fröman and P. O. Fröman, Stark Effect in a Hydrogenic Atom or Ion (Imperial College Press, Univ. Uppsala, Sweden, 2008).

  16. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 122, 120 (2017).

    Article  ADS  Google Scholar 

  17. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 125, 409 (2018).

    Article  ADS  Google Scholar 

  18. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975; Benjamin, Reading, 1977).

  19. J. J. Sakurai, Modern Quantum Mechanics (Adison-Wesley, New York, 1994).

    Google Scholar 

  20. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (BKhV-Peterburg, St. Petersburg, 2011; Academic, New York, 1980).

  21. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2016; Pergamon, New York, 1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Golovinskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinskii, P.A., Preobrazhenskii, M.A. & Drobyshev, A.A. Density of Energy Spectrum of an Electron in the Image-Potential Field and a Trapping Electric Field. Opt. Spectrosc. 129, 199–204 (2021). https://doi.org/10.1134/S0030400X21020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21020053

Keywords:

Navigation