Skip to main content
Log in

Parametric Model of the Optical Constant Spectra of Hg1 – xCdxTe and Determination of the Compound Composition

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A parametric model describing the spectra of optical constants n(λ) and k(λ) of a Hg1 – xCdxTe (MCT) solid solution for the x values in the range from 0.2 to 0.4 is developed. This model is based on empirical data measured in situ during the epitaxial growth of solid-solution layers. Several versions of application of the obtained model for in situ real-time determination of the MCT composition have been considered. A technique for determining the composition using spectral ellipsometric measurements is proposed, which ensures the error of no more than δx = ±0.0035.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors. Numerical Data and Graphical Information (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  2. H. Arvin and D. E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984).

    Article  ADS  Google Scholar 

  3. L. Via, C. Umbach, M. Cardona, and L. Vodopyanov, Phys. Rev. B 29, 6752 (1984).

    Article  ADS  Google Scholar 

  4. T. J. de Lion, G. L. Olson, J. A. Roth, J. E. Jensen, A. T. Hunter, M. D. Jack, and S. L. Bailey, J. Electron. Mater. 31, 688 (2002).

    Article  ADS  Google Scholar 

  5. B. Johs, C. Herzinger, J. H. Dinan, A. Cornfeld, and J. D. Benson, Thin Solid Films 313–314, 137 (1998).

    Article  Google Scholar 

  6. L. A. Almedia and J. H. Dinan, J. Cryst. Growth 201–202, 22 (1999).

    Article  ADS  Google Scholar 

  7. Mercury Cadmium Telluride. Growth, Properties, and Applications, Ed. by P. Capper and J. Garland (Wiley, New York, 2011).

    Google Scholar 

  8. A. Moritani, H. Sekiya, and K. Taniguchi, Jpn. J. Appl. Phys. 10, 1410 (1971).

    Article  ADS  Google Scholar 

  9. M. Rösch, R. Alzmüller, G. Schaack, and C. R. Becker, Phys. Rev. B 49, 13460 (1994).

    Article  ADS  Google Scholar 

  10. C. C. Kim, M. Daraselia, J. W. Garland, and S. Sivananthan, Phys. Rev. B 56, 4786 (1997).

    Article  ADS  Google Scholar 

  11. S. Adachi, T. Kimura, and N. Suzuki, J. Appl. Phys. 74, 3435 (1993).

    Article  ADS  Google Scholar 

  12. J. Chu, Z. Mi, and D. Tang, J. Appl. Phys. 71, 3955 (1992). https://doi.org/10.1063/1.350867

    Article  ADS  Google Scholar 

  13. K. Liu, J. H. Chu, and D. Y. Tang, J. Appl. Phys. 75, 4176 (1994).

    Article  ADS  Google Scholar 

  14. J. Phillips, D. Edwall, D. Lee, and J. Arias, J. Vac. Sci. Technol. B 19, 1580 (2001).

    Article  Google Scholar 

  15. D. Edwall, J. Phillips, D. Lee, and J. Arias, J. Electron. Mater. 30, 643 (2001).

    Article  ADS  Google Scholar 

  16. B. Johs, C. Herzinger, J. H. Dinan, A. Cornfeld, J. D. Benson, D. Doctor, G. Olson, I. Ferguson, M. Pelczynski, P. Ghow, C. H. Kuo, and S. Johnson, Thin Solid Films 313–314, 490 (1998).

    Article  Google Scholar 

  17. K. K. Svitashev, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, A. S. Mardezhov, I. E. Nis, V. S. Varavin, V. Liberman, and V. G. Remesnik, Cryst. Res. Technol. 29, 931 (1994).

    Article  Google Scholar 

  18. V. A. Shvets, N. N. Mikhailov, D. G. Ikusov, I. N. Uzhakov, and S. A. Dvoretskii, Opt. Spektrosc. 127, 318 (2019).

    Google Scholar 

  19. A. B. Djurišić and E. H. Li, J. Appl. Phys. 85, 2854 (1999).

    Article  ADS  Google Scholar 

  20. Yu. G. Sidorov, S. A. Dvoretskii, N. N. Mikhailov, M. V. Yakushev, B. C. Varavin, and A. P. Antsiferov, J. Opt. Technol. 67, 31 (2000).

    Article  ADS  Google Scholar 

  21. V. A. Shvets, I. A. Azarov, E. V. Spesivtsev, S. V. Rykhlitskii, M. V. Yakushev, D. V. Marin, N. N. Mikhailov, V. D. Kuz’min, V. G. Remesnik, and S. A. Dvoretskii, Instrum. Exp. Tech. 59, 857 (2016).

    Article  Google Scholar 

  22. E. V. Spesivtsev, S. V. Rykhlitskii, and V. A. Shvets, Optoelectron., Instrum. Data Process. 47, 419 (2011).

    Article  Google Scholar 

  23. E. Finkman and S. E. Schacham, J. Appl. Phys. 56, 2896 (1984).

    Article  ADS  Google Scholar 

  24. K. K. Svitashev, V. A. Shvets, A. S. Mardezhov, S. A. Dvoretsky, Yu. G. Sidorov, N. N. Mikhailov, E. V. Spesivtsev, and S. V. Rychlitsky, Mater. Sci. Eng. B 44, 164 (1997).

    Article  Google Scholar 

  25. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (state contract no. 0306-2019-0004) and, in part, the Russian Foundation for Basic Research (project no. 19-29-20053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shvets.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, V.A., Marin, D.V., Remesnik, V.G. et al. Parametric Model of the Optical Constant Spectra of Hg1 – xCdxTe and Determination of the Compound Composition. Opt. Spectrosc. 128, 1948–1953 (2020). https://doi.org/10.1134/S0030400X20121042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20121042

Keywords:

Navigation