Skip to main content
Log in

On the Bose–Einstein Condensate of Excitons in Crystals with Defects

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The possibility of formation of a Bose–Einstein condensate (BEC) of excitons in a model nonideal lattice of a molecular crystal is considered. The spectrum of corresponding exciton excitations is analyzed. The dependence of the chemical potential on the concentration of structural defects is numerically simulated within the virtual crystal approximation, and particular features of the appearance of an exciton condensate in a nonideal system are studied based on this simulation. Conditions under which an BEC of light and dark excitons can appear are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. A. Moskalenko, Bose–Einstein Condensation of Excitons (Shtiintsa, Kishinev, 1970) [in Russian].

  2. S. A. Moskalenko and D. W. Snoke, Bose–Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  3. I. Kh. Akopyan, E. F. Gross, and B. S. Razbirin, JETP Lett. 12, 251 (1970).

    ADS  Google Scholar 

  4. Y. Kato, T. Goto, T. Fuji, and M. Ueta, J. Phys. Soc. Jpn. 36, 169 (1974).

    Article  ADS  Google Scholar 

  5. N. Peyghambarian and L. L. Chase, Phys. Rev. B 27, 2325 (1983).

    Article  ADS  Google Scholar 

  6. A. Kogar, M. S. Rak, S. Vig, et al., Science (Washington, DC, U. S.) 358, 1314 (2017).

    Article  ADS  Google Scholar 

  7. M. Combescot, R. Combescot, and F. Dubin, Rep. Prog. Phys. 80, 066501 (2017).

    Article  ADS  Google Scholar 

  8. V. V. Rumyantsev, Yu. D. Zavorotnev, and O. Yu. Popova, J. Photon. Mater. Technol. 4, 39 (2018).

    Article  Google Scholar 

  9. Yu. D. Zavorotnev and L. N. Ovander, Izv. Akad. Nauk, Ser. Fiz. 69, 984 (2005).

    Google Scholar 

  10. A. G. Sotnikov, K. V. Sereda, and Yu. V. Slyusarenko, J. Low Temp. Phys. 43, 144 (2017).

    Article  Google Scholar 

  11. V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, M. V. Sychanova, and A. V. Kavokin, Nat. Sci. Rep. 4, 6945 (2014).

    Article  ADS  Google Scholar 

  12. V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennik, Phys. Solid State 59, 758 (2017).

    Article  ADS  Google Scholar 

  13. V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, D. A. Gurov, and A. V. Kavokin, Superlatt. Microstruct. 120, 642 (2018).

    Article  ADS  Google Scholar 

  14. V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, and Yu. A. Paladyan, Phys. B: Condens. Matter 571, 296 (2019).

    Article  ADS  Google Scholar 

  15. J. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ., Cambridge, New York, 1979).

    Google Scholar 

  16. V. M. Agranovich, Exciton Theory (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  17. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, New York, 1983; Nauka, Moscow, 1978).

  18. Yu. D. Zavorotnev and L. N. Ovander, Nonlinear Optical Effects in Molecular Crystals (Nord-Press, Donetsk, 2005) [in Russian].

    Google Scholar 

  19. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (GIFML, Moscow, 1962; Prentice-Hall, Englewood Cliffs, NJ, 1963).

  20. Yu. D. Zavorotnev and O. Yu. Popova, J. Photon. Mater. Technol. 1, 10 (2015).

    Article  Google Scholar 

  21. L. N. Ovander, Usp. Fiz. Nauk 86, 3 (1965).

    Article  Google Scholar 

  22. Yu. D. Zavorotnev and L. N. Ovander, Phys. Status Solidi 68, 443 (1975).

    Article  Google Scholar 

Download references

Funding

The studies in this work were performed within the framework of the state-funded project “Formation of the Structure and Properties of Promising Multifunctional Materials” at the Donetsk Institute for Physics and Engineering named after A.A. Galkin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavorotnev, Y.D., Rumyantsev, V.V., Fedorov, S.A. et al. On the Bose–Einstein Condensate of Excitons in Crystals with Defects. Opt. Spectrosc. 128, 1537–1542 (2020). https://doi.org/10.1134/S0030400X20100276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20100276

Keywords:

Navigation