Skip to main content

The Effect of Diffraction on a Pulse of Squeezed Light in the Protocol of a Multimode Resonant Quantum Memory Based on a Thermal Atomic Ensemble

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of diffraction on the conservation of the quantum state of a quadrature-squeezed light pulse in an ensemble of thermal atoms for a collinear configuration of light fields has been considered. The motion of atoms leads to the fact that when both the signal and control fields propagate in the same direction as when writing, there is an uncompensated phase incursion even in the case of forward reading. This phase incursion leads to the fact that the squeezed quadrature of the light pulse is mixed with a stretched one. As a result, the pulse squeezing can decrease significantly. The analyses of the effect of diffraction for different configurations of the multimode resonant quantum memory protocol has been performed and the ways to reduce this effect to a possible minimum have been found.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010). https://doi.org/10.1103/RevModPhys.82.1041

    ADS  Article  Google Scholar 

  2. 2

    A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photon. 3, 706 (2009). https://doi.org/10.1038/nphoton.2009.231

    ADS  Article  Google Scholar 

  3. 3

    J. Simon, H. Tanji, J. K. Thompson, and V. Vuletić, Phys. Rev. Lett. 98, 183601 (2007). https://doi.org/10.1103/PhysRevLett.98.183601

    ADS  Article  Google Scholar 

  4. 4

    C. W. Chou, L. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, Science (Washington, DC, U. S.) 316, 1316 (2007). https://doi.org/10.1126/science.1140300

    ADS  Article  Google Scholar 

  5. 5

    Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, Nat. Phys. 4, 103 (2008). https://doi.org/10.1038/nphys832

    Article  Google Scholar 

  6. 6

    W. Tittel, M. Afzelius, T. Chaneliere, R. L. Cone, S. Kroll, S. A. Moiseev, and M. Sellars, Laser Photon. Rev. 4, 244 (2010). https://doi.org/10.1002/lpor.200810056

    ADS  Article  Google Scholar 

  7. 7

    M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, Nat. Phys. 7, 794 (2011). https://doi.org/10.1038/nphys2021

    Article  Google Scholar 

  8. 8

    R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Nat. Photon. 3, 103 (2009).https://doi.org/10.1038/nphoton.2008.290

    ADS  Article  Google Scholar 

  9. 9

    N. B. Phillips, A. V. Gorshkov, and I. Novikova, Phys. Rev. A 83, 063823 (2011). https://doi.org/10.1103/PhysRevA.83.063823

    ADS  Article  Google Scholar 

  10. 10

    A. J. F. de Almeida, J. Sales, M. A. Maynard, T. Lauprêtre, F. Bretenaker, D. Felinto, F. Goldfarb, and J. W. R. Tabosa, Phys. Rev. A 90, 043803 (2014). https://doi.org/10.1103/PhysRevA.90.043803

    ADS  Article  Google Scholar 

  11. 11

    T. Brannan, Z. Qin, A. MacRae, and A. I. Lvovsky, Opt. Lett. 39, 18 (2014). https://doi.org/10.1364/OL.39.005447

    Article  Google Scholar 

  12. 12

    I. Novikova, R. L. Walsworth, and Y. Xiao, Laser Photon. Rev. 6, 333 (2011). https://doi.org/10.1002/lpor.201100021

    ADS  Article  Google Scholar 

  13. 13

    J. Borregaard, M. Zugenmaier, J. M. Petersen, H. Shen, G. Vasilakis, K. Jensen, E. S. Polzik, and A. S. Sørensen, Nat. Commun. 7, 11356 (2016). https://doi.org/10.1038/ncomms11356

    ADS  Article  Google Scholar 

  14. 14

    K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, Phys. Rev. A 78, 033806 (2008). https://doi.org/10.1103/PhysRevA.78.033806

    ADS  Article  Google Scholar 

  15. 15

    K. Tikhonov, T. Golubeva, and Y. Golubev, Eur. Phys. J. D 69, 252 (2015). https://doi.org/10.1140/epjd/e2015-60370-6

    ADS  Article  Google Scholar 

  16. 16

    P. Vernaz-Gris, A. D. Tranter, J. L. Everett, A. C. Leung, K. V. Paul, G. T. Campbell, P. K. Lam, and B. C. Buchler, Opt. Express 26, 12424 (2018). https://doi.org/10.1364/OE.26.012424

    ADS  Article  Google Scholar 

  17. 17

    T. Y. Golubeva, Y. M. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino, Phys. Rev. A 83, 053810 (2011). https://doi.org/10.1103/PhysRevA.83.053810

    ADS  Article  Google Scholar 

  18. 18

    T. Y. Golubeva, Y. M. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino, Eur. Phys. J. D 66, 275 (2012). https://doi.org/10.1140/epjd/e2012-20723-3

    ADS  Article  Google Scholar 

  19. 19

    T. M. Karg, B. Gouraud, C. T. Ngai, G. L. Schmid, K. Hammerer, and P. Treutlein, Science (2020, in press). https://doi.org/10.1126/science.abb0328

  20. 20

    A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. Sorensen, Phys. Rev. A 76, 033804 (2007). https://doi.org/10.1103/PhysRevA.76.033804

    ADS  Article  Google Scholar 

  21. 21

    H. J. Metcalf, Laser Cooling and Trapping (Springer, New York, 1999).

    Book  Google Scholar 

  22. 22

    M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999). https://doi.org/10.1103/RevModPhys.71.1539

    ADS  Article  Google Scholar 

  23. 23

    M. V. Fedorov, Phys. Scr. 95, 6 (2020). https://doi.org/10.1088/1402-4896/ab7aa7

    Article  Google Scholar 

  24. 24

    T. Y. Golubeva, D. A. Ivanov, and Y. M. Golubev, Phys. Rev. A 77, 052316 (2008). https://doi.org/10.1103/PhysRevA.77.052316

    ADS  Article  Google Scholar 

  25. 25

    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ.Press, Cambridge, 2014).

    Google Scholar 

  26. 26

    T. Y. Golubeva and Yu. M. Golubev, J. Russ. Laser Res. 36, 522 (2015). https://doi.org/10.1007/s10946-015-9531-y

    Article  Google Scholar 

  27. 27

    I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007). https://doi.org/10.1103/PhysRevLett.98.243602

    ADS  Article  Google Scholar 

  28. 28

    I. Novikova, N. B. Phillips, and A. V. Gorshkov, Phys. Rev. A 78, 021802 (R) (2007). https://doi.org/10.1103/PhysRevA.78.021802

  29. 29

    V. V. Kuzmin, A. N. Vetlugin, and I. V. Sokolov, Opt. Spectrosc. 119, 1004 (2015). https://doi.org/10.1134/S0030400X15120152

    ADS  Article  Google Scholar 

  30. 30

    A. D. Manukhova, K. S. Tikhonov, T. Yu. Golubeva, and Yu. M. Golubev, Phys. Rev. A 96, 023851 (2017). https://doi.org/10.1103/PhysRevA.96.023851

    ADS  Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (grant no. 18-02-00648 and grant no. 19-02-00204).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. S. Tikhonov.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zinatullin, E.R., Tikhonov, K.S., Golubeva, T.Y. et al. The Effect of Diffraction on a Pulse of Squeezed Light in the Protocol of a Multimode Resonant Quantum Memory Based on a Thermal Atomic Ensemble. Opt. Spectrosc. 128, 1458–1474 (2020). https://doi.org/10.1134/S0030400X20090258

Download citation

Keyword:

  • squeezed light
  • quantum memory
  • thermal motion of atoms