Skip to main content
Log in

Optical Properties of Hyperosmotic Agents for Immersion Clearing of Tissues in Terahertz Spectroscopy

  • UV, IR, AND TERAHERTZ OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We measured the transmission spectra of the most common hyperosmotic agents, such as pure glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), polyethylene glycol (PEG) with molecular weights of 200, 300, 400, and 600 Da, their aqueous solutions, and aqueous solutions of sucrose, glucose, fructose, and dextran 40 and 70. The experiments were carried out using a THz pulsed spectrometer with an evacuated measuring compartment to eliminate the effect of water vapor on spectral measurements. We reconstructed the dielectric characteristics of hyperosmotic agents in the spectral range from 0.1 to 2.5 THz and plotted a dependence of the amplitude absorption coefficient on the concentration of the considered agents at a frequency of 0.5 THz. The results are useful for selecting optimal agents for immersion optical clearing in the THz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, and S. O. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 5, 810 (2015). https://doi.org/10.1109/TTHZ.2015.2460671

    Article  ADS  Google Scholar 

  2. E. V. Yakovlev, K. I. Zaytsev, N. V. Chernomyrdin, A. A. Gavdush, A. K. Zotov, M. Y. Nikonovich, and S. O. Yurchenko, Proc. SPIE 9899, 98990W (2016). https://doi.org/10.1117/12.2227321

    Article  ADS  Google Scholar 

  3. I. N. Dolganova, K. I. Zaytsev, A. A. Metelkina, V. E. Karasik, and S. O. Yurchenko, Rev. Sci. Instrum. 86, 113704 (2015). https://doi.org/10.1063/1.4935495

    Article  ADS  Google Scholar 

  4. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209 (2007). https://doi.org/10.1211/jpp.59.2.0008

    Article  Google Scholar 

  5. O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J. P. Guillet, S. A. Kozlov, Y. V. Kistenev, J. L. Coutaz, P. Mounaix, V. L. Vaks, J. H. Son, H. Cheon, et al., Progr. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001

    Article  ADS  Google Scholar 

  6. R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, J. Invest. Dermatol. 120, 72 (2003). https://doi.org/10.1046/j.1523-1747.2003.12013.x

    Article  Google Scholar 

  7. K. I. Zaytsev, A. A. Gavdush, N. V. Chernomyrdin, and S. O. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 5, 817 (2015). https://doi.org/10.1109/TTHZ.2015.2460677

    Article  ADS  Google Scholar 

  8. K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, Appl. Phys. Lett. 106, 053702 (2015). https://doi.org/10.1063/1.4907350

    Article  ADS  Google Scholar 

  9. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, Radiology 239, 533 (2006). https://doi.org/10.1148/radiol.2392041315

    Article  Google Scholar 

  10. C. B. Reid, A. Fitzgerald, G. Reese, R. Goldin, P. Tekkis, P. S. O’Kelly, E. Pickwell-MacPherson, A. P. Gibson, and V. P. Wallace, Phys. Med. Biol. 56, 4333 (2011). https://doi.org/10.1088/0031-9155/56/14/008

    Article  Google Scholar 

  11. S. J. Oh, S.-H. Kim, Ji Y. Bin, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, Biomed. Opt. Express 5, 2837 (2014). https://doi.org/10.1364/BOE.5.002837

    Article  Google Scholar 

  12. A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, S.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, J. Biomed. Opt. 24, 027001 (2019). https://doi.org/10.1117/1.JBO.24.2.027001

    Article  ADS  Google Scholar 

  13. N. V. Chernomyrdin, A. A. Gavdush, S.-I. T. Beshplav, K. M. Malakhov, A. S. Kucheryavenko, G. M. Katyba, I. N. Dolganova, S. A. Goryaynov, V. E. Karassik, I. E. Spector, V. N. Kurlov, S. O. Yurchenko, G. A. Komandin, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, Proc. SPIE 10716, 107160S (2018). https://doi.org/10.1117/12.2316302

    Article  Google Scholar 

  14. N. V. Chernomyrdin, I. N. Dolganova, S.-I. T. Beshplav, P. V. Aleksandrova, G. R. Musina, K. M. Malakhov, P. V. Nikitin, A. V. Kosyr’kova, G. A. Komandin, I. V. Reshetov, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, Proc. SPIE 10864, 1086406 (2019). https://doi.org/10.1117/12.2506600

    Article  Google Scholar 

  15. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-09540-0

    Book  Google Scholar 

  16. O. Smolyanskaya, N. Chernomyrdin, A. Konovko, K. Zaytsev, I. Ozheredov, O. Cherkasova, M. Nazarov, J.-P. Guillet, S. Kozlov, Y. Kistenev, J.-L. Coutaz, P. Mounaix, V. Vaks, J.-H. Son, H. Cheon, et al., Progr. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001

    Article  ADS  Google Scholar 

  17. K. Zaytsev, G. Katyba, V. Kurlov, I. Shikunova, V. Karasik, and S. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 6, 576 (2016). https://doi.org/10.1109/TTHZ.2016.2555981

    Article  ADS  Google Scholar 

  18. G. Katyba, K. Zaytsev, N. Chernomyrdin, I. Shikunova, G. Komandin, V. Anzin, S. Lebedev, I. Spektor, V. Karasik, S. Yurchenko, I. Reshetov, V. Kurlov, and M. Skorobogatiy, Adv. Opt. Mater. 6, 1800573 (2018). https://doi.org/10.1002/adom.201800573

    Article  Google Scholar 

  19. G. Katyba, K. Zaytsev, I. Dolganova, I. Shikunova, N. Chernomyrdin, S. Yurchenko, G. Komandin, I. Reshetov, V. Nesvizhevsky, and V. Kurlov, Progr. Cryst. Growth Charact. Mater. 64, 133 (2018). https://doi.org/10.1016/j.pcrysgrow.2018.10.002

    Article  Google Scholar 

  20. B. Fan, V. Neel, and A. Yaroslavsky, Lasers Surg. Med. 49, 319 (2017). https://doi.org/10.1002/lsm.22552

    Article  Google Scholar 

  21. N. Chernomyrdin, M. Frolov, S. Lebedev, I. Reshetov, I. Spektor, V. Tolstoguzov, V. Karasik, A. Khorokhorov, K. Koshelev, A. Schadko, S. Yurchenko, and K. Zaytsev, Rev. Sci. Instrum. 88, 014703 (2017). https://doi.org/10.1063/1.4973764

    Article  ADS  Google Scholar 

  22. N. Chernomyrdin, A. Kucheryavenko, G. Kolontaeva, G. Katyba, I. Dolganova, P. Karalkin, D. Ponomarev, V. Kurlov, I. Reshetov, M. Skorobogatiy, V. Tuchin, and K. Zaytsev, Appl. Phys. Lett. 113, 111102 (2018). https://doi.org/10.1063/1.5045480

    Article  ADS  Google Scholar 

  23. H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, Appl. Phys. Lett. 94, 123901 (2009). https://doi.org/10.1063/1.3106616

    Article  ADS  Google Scholar 

  24. Y. Sim, K.-M. Ahn, J. Park, C.-S. Park, and J.-H. Son, IEEE Trans. Terahertz Sci. Technol. 17, 368 (2013). https://doi.org/10.1109/JBHI.2013.2252357

    Article  ADS  Google Scholar 

  25. Y. He, K. Liu, C. Au, Q. Sun, E. Parrott, and E. PickWell-MacPherson, Phys. Med. Biol. 62, 8882 (2017). https://doi.org/10.1088/1361-6560/aa8ebe

    Article  Google Scholar 

  26. G. Png, J. Choi, B.-H. Ng, S. Mickan, D. Abbott, and X.-C. Zhang, Phys. Med. Biol. 53, 3501 (2008). https://doi.org/10.1088/0031-9155/53/13/007

    Article  Google Scholar 

  27. K. Meng, T.-N. Chen, T. Chen, L.-G. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.‑H. Zhao, J. Biomed. Opt. 19, 077001 (2014). https://doi.org/10.1117/1.JBO.19.7.077001

    Article  ADS  Google Scholar 

  28. Y. Sun, B. Fischer, and E. Pickwell-MacPherson, J. Biomed. Opt. 14, 064017 (2009). https://doi.org/10.1117/1.3268439

    Article  ADS  Google Scholar 

  29. S. Oh, S. H. Kim, K. Jeong, Y. Park, Y.-M. Huh, J.‑H. Son, and J.-S. Suh, Opt. Express 21, 21299 (2013). https://doi.org/10.1364/OE.21.021299

    Article  ADS  Google Scholar 

  30. A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, Phys. Wave Phenom. 22, 169 (2014). https://doi.org/10.3103/S1541308X14030029

    Article  ADS  Google Scholar 

  31. A. Kolesnikov, E. Kolesnikova, D. Tuchina, A. Terentyuk, M. Nazarov, A. Skaptsov, A. Shkurinov, and V. Tuchin, Proc. SPIE 9031, 90310D (2014). https://doi.org/10.1117/12.2052226

    Article  ADS  Google Scholar 

  32. A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, Quantum Electron. 44, 633 (2014). https://doi.org/10.1070/QE2014v044n07ABEH015493

    Article  ADS  Google Scholar 

  33. O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, Biomed. Opt. Express 9, 1198 (2018). https://doi.org/10.1364/BOE.9.001198

    Article  Google Scholar 

  34. G. Musina, I. Dolganova, K. Malakhov, A. Gavdush, N. Chernomyrdin, D. Tuchina, G. Komandin, S. Chuchupal, O. Cherkasova, K. Zaytsev, and V. Tuchin, Proc. SPIE 10800, 108000F (2018). https://doi.org/10.1117/12.2324473

    Article  Google Scholar 

  35. G. Musina, A. Gavdush, D. Tuchina, I. Dolganova, G. Komandin, S. Chuchupal, O. Smolyanskaya, O. Cherkasova, K. Zaytsev, and V. Tuchin, Proc. SPIE 11065, 110651Z (2019). https://doi.org/10.1117/12.2526168

    Article  Google Scholar 

  36. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE, Bellingham, 2007). https://doi.org/10.1117/3.1003040

    Book  Google Scholar 

  37. E. Genina, A. Bashkatov, Y. Sinichkin, I. Yanina, and V. Tuchin, J. Biomed. Photon. Eng. 1, 22 (2015). https://doi.org/10.18287/jbpe-2015-1-1-22

    Article  Google Scholar 

  38. A. Bashkatov, K. Berezin, K. Dvoretskiy, M. Chernavina, E. Genina, V. Genin, V. Kochubey, E. Lazareva, A. Pravdin, M. Shvachkina, P. Timoshina, D. Tuchina, D. Yakovlev, D. Yakovlev, I. Yanina, O. Zhernovaya, and V. Tuchin, J. Biomed. Opt. 23, 091416 (2018). https://doi.org/10.1117/1.JBO.23.9.091416

    Article  ADS  Google Scholar 

  39. Z. Mao, D. Zhu, X. Wen, and Z. Han, J. Biomed. Opt. 13, 021104 (2008). https://doi.org/10.1117/1.2892684

    Article  ADS  Google Scholar 

  40. D. Tuchina, V. Genin, A. Bashkatov, E. Genina, and V. Tuchin, Opt. Spectrosc. 120, 36 (2016). https://doi.org/10.1134/S0030400X16010215

    Article  ADS  Google Scholar 

  41. L. Oliveira, M. Carvalho, M. Nogueira, and V. Tuchin, J. Biomed. Opt. 20, 051019 (2015). https://doi.org/10.1117/1.JBO.20.5.051019

  42. X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010). https://doi.org/10.1134/S1054660X10170032

    Article  ADS  Google Scholar 

  43. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, J. Biomed. Opt. 22, 091506 (2017). https://doi.org/10.1117/1.jbo.22.9.091506

    Article  ADS  Google Scholar 

  44. P. Liu, Y. Huang, Z. Guo, J. Wang, Z. Zhuang, and S. Liu, J. Biomed. Opt. 18, 020507 (2013). https://doi.org/10.1117/1.jbo.18.2.020507

    Article  ADS  Google Scholar 

  45. Q. Zhao, H. Wei, Y. He, Q. Ren, and C. Zhou, J. Biophoton. 7, 938 (2014). https://doi.org/10.1002/jbio.201300141

  46. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, and H. Q. Zhong, Laser Phys. Lett. 8, 71 (2010). https://doi.org/10.1002/lapl.201010081

    Article  Google Scholar 

  47. A. Gavdush, V. Ulitko, G. Musina, I. Dolganova, N. Chernomyrdin, V. Kurlov, G. Komandin, V. Tuchin, and K. Zaytsev, Proc. SPIE 11060, 110601G (2019). https://doi.org/10.1117/12.2527649

    Article  Google Scholar 

  48. L. Oliveira and V. Tuchin, The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering, Springer Briefs in Physics (Springer, Switzerland, 2019). https://doi.org/10.1007/978-3-030-33055-2

    Book  Google Scholar 

Download references

Funding

I.N. Dolganova developed the cuvette; this part was supported by the Grant of the President of the Russian Federation for the State Support of Young Russian Scientists—Candidates of Science (project no. MK-2541.2019.8). N.V. Chernomyrdin and V.V. Tuchin analyzed the absorption data for the solutions of agents with different concentrations, supported by the Russian Foundation for Basic Research (project no. 19-32-50075). V.V. Tuchin selected clearing agents with the support of the Russian Foundation for Basic Research (project no. 18-52-16025 NTsNIL_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Musina.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musina, G.R., Gavdush, A.A., Chernomyrdin, N.V. et al. Optical Properties of Hyperosmotic Agents for Immersion Clearing of Tissues in Terahertz Spectroscopy. Opt. Spectrosc. 128, 1026–1035 (2020). https://doi.org/10.1134/S0030400X20070279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070279

Keywords:

Navigation