Abstract
We measured the transmission spectra of the most common hyperosmotic agents, such as pure glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), polyethylene glycol (PEG) with molecular weights of 200, 300, 400, and 600 Da, their aqueous solutions, and aqueous solutions of sucrose, glucose, fructose, and dextran 40 and 70. The experiments were carried out using a THz pulsed spectrometer with an evacuated measuring compartment to eliminate the effect of water vapor on spectral measurements. We reconstructed the dielectric characteristics of hyperosmotic agents in the spectral range from 0.1 to 2.5 THz and plotted a dependence of the amplitude absorption coefficient on the concentration of the considered agents at a frequency of 0.5 THz. The results are useful for selecting optimal agents for immersion optical clearing in the THz range.
Similar content being viewed by others
REFERENCES
E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, and S. O. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 5, 810 (2015). https://doi.org/10.1109/TTHZ.2015.2460671
E. V. Yakovlev, K. I. Zaytsev, N. V. Chernomyrdin, A. A. Gavdush, A. K. Zotov, M. Y. Nikonovich, and S. O. Yurchenko, Proc. SPIE 9899, 98990W (2016). https://doi.org/10.1117/12.2227321
I. N. Dolganova, K. I. Zaytsev, A. A. Metelkina, V. E. Karasik, and S. O. Yurchenko, Rev. Sci. Instrum. 86, 113704 (2015). https://doi.org/10.1063/1.4935495
J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209 (2007). https://doi.org/10.1211/jpp.59.2.0008
O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J. P. Guillet, S. A. Kozlov, Y. V. Kistenev, J. L. Coutaz, P. Mounaix, V. L. Vaks, J. H. Son, H. Cheon, et al., Progr. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, J. Invest. Dermatol. 120, 72 (2003). https://doi.org/10.1046/j.1523-1747.2003.12013.x
K. I. Zaytsev, A. A. Gavdush, N. V. Chernomyrdin, and S. O. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 5, 817 (2015). https://doi.org/10.1109/TTHZ.2015.2460677
K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, Appl. Phys. Lett. 106, 053702 (2015). https://doi.org/10.1063/1.4907350
A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, Radiology 239, 533 (2006). https://doi.org/10.1148/radiol.2392041315
C. B. Reid, A. Fitzgerald, G. Reese, R. Goldin, P. Tekkis, P. S. O’Kelly, E. Pickwell-MacPherson, A. P. Gibson, and V. P. Wallace, Phys. Med. Biol. 56, 4333 (2011). https://doi.org/10.1088/0031-9155/56/14/008
S. J. Oh, S.-H. Kim, Ji Y. Bin, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, Biomed. Opt. Express 5, 2837 (2014). https://doi.org/10.1364/BOE.5.002837
A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, S.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, J. Biomed. Opt. 24, 027001 (2019). https://doi.org/10.1117/1.JBO.24.2.027001
N. V. Chernomyrdin, A. A. Gavdush, S.-I. T. Beshplav, K. M. Malakhov, A. S. Kucheryavenko, G. M. Katyba, I. N. Dolganova, S. A. Goryaynov, V. E. Karassik, I. E. Spector, V. N. Kurlov, S. O. Yurchenko, G. A. Komandin, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, Proc. SPIE 10716, 107160S (2018). https://doi.org/10.1117/12.2316302
N. V. Chernomyrdin, I. N. Dolganova, S.-I. T. Beshplav, P. V. Aleksandrova, G. R. Musina, K. M. Malakhov, P. V. Nikitin, A. V. Kosyr’kova, G. A. Komandin, I. V. Reshetov, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, Proc. SPIE 10864, 1086406 (2019). https://doi.org/10.1117/12.2506600
Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-09540-0
O. Smolyanskaya, N. Chernomyrdin, A. Konovko, K. Zaytsev, I. Ozheredov, O. Cherkasova, M. Nazarov, J.-P. Guillet, S. Kozlov, Y. Kistenev, J.-L. Coutaz, P. Mounaix, V. Vaks, J.-H. Son, H. Cheon, et al., Progr. Quantum Electron. 62, 1 (2018). https://doi.org/10.1016/j.pquantelec.2018.10.001
K. Zaytsev, G. Katyba, V. Kurlov, I. Shikunova, V. Karasik, and S. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 6, 576 (2016). https://doi.org/10.1109/TTHZ.2016.2555981
G. Katyba, K. Zaytsev, N. Chernomyrdin, I. Shikunova, G. Komandin, V. Anzin, S. Lebedev, I. Spektor, V. Karasik, S. Yurchenko, I. Reshetov, V. Kurlov, and M. Skorobogatiy, Adv. Opt. Mater. 6, 1800573 (2018). https://doi.org/10.1002/adom.201800573
G. Katyba, K. Zaytsev, I. Dolganova, I. Shikunova, N. Chernomyrdin, S. Yurchenko, G. Komandin, I. Reshetov, V. Nesvizhevsky, and V. Kurlov, Progr. Cryst. Growth Charact. Mater. 64, 133 (2018). https://doi.org/10.1016/j.pcrysgrow.2018.10.002
B. Fan, V. Neel, and A. Yaroslavsky, Lasers Surg. Med. 49, 319 (2017). https://doi.org/10.1002/lsm.22552
N. Chernomyrdin, M. Frolov, S. Lebedev, I. Reshetov, I. Spektor, V. Tolstoguzov, V. Karasik, A. Khorokhorov, K. Koshelev, A. Schadko, S. Yurchenko, and K. Zaytsev, Rev. Sci. Instrum. 88, 014703 (2017). https://doi.org/10.1063/1.4973764
N. Chernomyrdin, A. Kucheryavenko, G. Kolontaeva, G. Katyba, I. Dolganova, P. Karalkin, D. Ponomarev, V. Kurlov, I. Reshetov, M. Skorobogatiy, V. Tuchin, and K. Zaytsev, Appl. Phys. Lett. 113, 111102 (2018). https://doi.org/10.1063/1.5045480
H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, Appl. Phys. Lett. 94, 123901 (2009). https://doi.org/10.1063/1.3106616
Y. Sim, K.-M. Ahn, J. Park, C.-S. Park, and J.-H. Son, IEEE Trans. Terahertz Sci. Technol. 17, 368 (2013). https://doi.org/10.1109/JBHI.2013.2252357
Y. He, K. Liu, C. Au, Q. Sun, E. Parrott, and E. PickWell-MacPherson, Phys. Med. Biol. 62, 8882 (2017). https://doi.org/10.1088/1361-6560/aa8ebe
G. Png, J. Choi, B.-H. Ng, S. Mickan, D. Abbott, and X.-C. Zhang, Phys. Med. Biol. 53, 3501 (2008). https://doi.org/10.1088/0031-9155/53/13/007
K. Meng, T.-N. Chen, T. Chen, L.-G. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.‑H. Zhao, J. Biomed. Opt. 19, 077001 (2014). https://doi.org/10.1117/1.JBO.19.7.077001
Y. Sun, B. Fischer, and E. Pickwell-MacPherson, J. Biomed. Opt. 14, 064017 (2009). https://doi.org/10.1117/1.3268439
S. Oh, S. H. Kim, K. Jeong, Y. Park, Y.-M. Huh, J.‑H. Son, and J.-S. Suh, Opt. Express 21, 21299 (2013). https://doi.org/10.1364/OE.21.021299
A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, Phys. Wave Phenom. 22, 169 (2014). https://doi.org/10.3103/S1541308X14030029
A. Kolesnikov, E. Kolesnikova, D. Tuchina, A. Terentyuk, M. Nazarov, A. Skaptsov, A. Shkurinov, and V. Tuchin, Proc. SPIE 9031, 90310D (2014). https://doi.org/10.1117/12.2052226
A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, Quantum Electron. 44, 633 (2014). https://doi.org/10.1070/QE2014v044n07ABEH015493
O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, Biomed. Opt. Express 9, 1198 (2018). https://doi.org/10.1364/BOE.9.001198
G. Musina, I. Dolganova, K. Malakhov, A. Gavdush, N. Chernomyrdin, D. Tuchina, G. Komandin, S. Chuchupal, O. Cherkasova, K. Zaytsev, and V. Tuchin, Proc. SPIE 10800, 108000F (2018). https://doi.org/10.1117/12.2324473
G. Musina, A. Gavdush, D. Tuchina, I. Dolganova, G. Komandin, S. Chuchupal, O. Smolyanskaya, O. Cherkasova, K. Zaytsev, and V. Tuchin, Proc. SPIE 11065, 110651Z (2019). https://doi.org/10.1117/12.2526168
V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE, Bellingham, 2007). https://doi.org/10.1117/3.1003040
E. Genina, A. Bashkatov, Y. Sinichkin, I. Yanina, and V. Tuchin, J. Biomed. Photon. Eng. 1, 22 (2015). https://doi.org/10.18287/jbpe-2015-1-1-22
A. Bashkatov, K. Berezin, K. Dvoretskiy, M. Chernavina, E. Genina, V. Genin, V. Kochubey, E. Lazareva, A. Pravdin, M. Shvachkina, P. Timoshina, D. Tuchina, D. Yakovlev, D. Yakovlev, I. Yanina, O. Zhernovaya, and V. Tuchin, J. Biomed. Opt. 23, 091416 (2018). https://doi.org/10.1117/1.JBO.23.9.091416
Z. Mao, D. Zhu, X. Wen, and Z. Han, J. Biomed. Opt. 13, 021104 (2008). https://doi.org/10.1117/1.2892684
D. Tuchina, V. Genin, A. Bashkatov, E. Genina, and V. Tuchin, Opt. Spectrosc. 120, 36 (2016). https://doi.org/10.1134/S0030400X16010215
L. Oliveira, M. Carvalho, M. Nogueira, and V. Tuchin, J. Biomed. Opt. 20, 051019 (2015). https://doi.org/10.1117/1.JBO.20.5.051019
X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010). https://doi.org/10.1134/S1054660X10170032
S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, J. Biomed. Opt. 22, 091506 (2017). https://doi.org/10.1117/1.jbo.22.9.091506
P. Liu, Y. Huang, Z. Guo, J. Wang, Z. Zhuang, and S. Liu, J. Biomed. Opt. 18, 020507 (2013). https://doi.org/10.1117/1.jbo.18.2.020507
Q. Zhao, H. Wei, Y. He, Q. Ren, and C. Zhou, J. Biophoton. 7, 938 (2014). https://doi.org/10.1002/jbio.201300141
Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, and H. Q. Zhong, Laser Phys. Lett. 8, 71 (2010). https://doi.org/10.1002/lapl.201010081
A. Gavdush, V. Ulitko, G. Musina, I. Dolganova, N. Chernomyrdin, V. Kurlov, G. Komandin, V. Tuchin, and K. Zaytsev, Proc. SPIE 11060, 110601G (2019). https://doi.org/10.1117/12.2527649
L. Oliveira and V. Tuchin, The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering, Springer Briefs in Physics (Springer, Switzerland, 2019). https://doi.org/10.1007/978-3-030-33055-2
Funding
I.N. Dolganova developed the cuvette; this part was supported by the Grant of the President of the Russian Federation for the State Support of Young Russian Scientists—Candidates of Science (project no. MK-2541.2019.8). N.V. Chernomyrdin and V.V. Tuchin analyzed the absorption data for the solutions of agents with different concentrations, supported by the Russian Foundation for Basic Research (project no. 19-32-50075). V.V. Tuchin selected clearing agents with the support of the Russian Foundation for Basic Research (project no. 18-52-16025 NTsNIL_a).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by O. Zhukova
Rights and permissions
About this article
Cite this article
Musina, G.R., Gavdush, A.A., Chernomyrdin, N.V. et al. Optical Properties of Hyperosmotic Agents for Immersion Clearing of Tissues in Terahertz Spectroscopy. Opt. Spectrosc. 128, 1026–1035 (2020). https://doi.org/10.1134/S0030400X20070279
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0030400X20070279