Skip to main content
Log in

Tomographic and Entropic Analysis of Modulated Signals

Optics and Spectroscopy Aims and scope Submit manuscript


We study an application of the quantum tomography framework for the time-frequency analysis of modulated signals. In particular, we calculate optical tomographic representations and Wigner–Ville distributions for signals with amplitude and frequency modulations. We also consider time-frequency entropic relations for modulated signals, which are naturally associated with the Fourier analysis. A numerical toolbox for calculating optical time-frequency tomograms based on pseudo Wigner–Ville distributions for modulated signals is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. L. Cohen, Time-Frequency Analysis (Prentice-Hall, New York, 1995).

    Google Scholar 

  2. A. Papandreou-Suppappola, Applications in Time-Frequency Signal Processing (CRC, Boca Raton, 2002).

    Book  Google Scholar 

  3. D. Dragoman, EURASIP J. Adv. Signal Process. 10, 1520 (2005).

    Article  Google Scholar 

  4. E. Sejdić, I. Djurović, and J. Jiang, Digit. Signal Process. 19, 153 (2009).

    Article  Google Scholar 

  5. W. J. Pielemeier, G. H. Wakefield, and M. H. Simoni, IEEE Proc. 84, 1216 (1996).

  6. E. P. Wigner, Phys. Rev. 40, 749 (1932).

    Article  ADS  Google Scholar 

  7. M. Hillery, R. O’Connell, M. Scully, and E. Wigner, Phys. Rep. 106, 121 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Weinbub and D. K. Ferry, Appl. Phys. Rev. 5, 041104 (2018).

    Article  ADS  Google Scholar 

  9. J. Ville, Cable Transm. 2, 61 (1948).

    Google Scholar 

  10. B. Boashash, IEEE Trans. Acoust. Speech. Signal Proces. 36, 1518 (1988).

    Article  Google Scholar 

  11. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A 213, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. I. Lvovsky and M. G. Raymer, Rev. Mod. Phys. 81, 299 (2009).

    Article  ADS  Google Scholar 

  13. V. I. Man’ko and R. V. Mendes, Phys. Lett. A 263, 53 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. A. Man’ko, J. Russ. Laser Res. 21, 411 (2000).

    Article  Google Scholar 

  15. M. A. Man’ko, V. I. Man’ko, and R. V. Mendes, J. Phys. A: Math. Gen. 34, 8321 (2001).

    Article  ADS  Google Scholar 

  16. S. de Nicola, R. Fedele, M. A. Man’ko, and V. I. Man’ko, Theor. Math. Phys. 144, 1206 (2005).

    Article  Google Scholar 

  17. M. A. Man’ko, J. Russ. Laser Res. 21, 411 (2000).

    Article  Google Scholar 

  18. F. Briolle, V. I. Man’ko, B. Ricaud, and R. V. Mendes, J. Russ. Laser Res. 33, 103 (2012).

    Article  Google Scholar 

  19. F. Briolle, R. Lima, V. I. Man’ko, and R. V. Mendes, Meas. Sci. Technol. 20, 105501 (2009).

    Article  ADS  Google Scholar 

  20. R. V. Mendes, Phys. Scr. 90, 074022 (2015).

    Article  ADS  Google Scholar 

  21. B. Trajin, M. Chabert, J. Regnier, and J. Faucher, in Proceedings of IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cargese, France (IEEE, New York, 2009).

  22. Y. S. Shin and J.-J. Jeon, Shock Vibr. 1, 65 (1993).

    Article  Google Scholar 

  23. V. Katkovnik and L. Stanković, IEEE Trans. Signal Process. 46, 2315 (1998).

    Article  ADS  Google Scholar 

  24. L. Stanković and V. Katkovnik, IEEE Signal Process. Lett. 5, 224 (1998).

    Article  ADS  Google Scholar 

  25. J. Lerga and V. Sucic, IEEE Signal Process. Lett. 16, 953 (2009).

    Article  ADS  Google Scholar 

  26. T. Fobbe, S. Markmann, F. Fobbe, N. Hekmat, H. Nong, S. Pal, P. Balzerwoski, J. Savolainen, M. Havenith, A. D. Wieck, and N. Jukam, Opt. Express 24, 22319 (2016).

    Article  ADS  Google Scholar 

  27. Z.-K. Gao, S.-S. Zhang, Q. Cai, Y.-X. Yang, and N.‑D. Jin, Sci. Rep. 6, 28151 (2016).

    Article  ADS  Google Scholar 

  28. R. B. Pachori and A. Nishad, Signal Process. 120, 288 (2016).

    Article  Google Scholar 

  29. D. Mustard, J. Austral. Math. Soc., Ser. B 38, 209 (1996).

    Article  MathSciNet  Google Scholar 

  30. J. R. de Oliveira Neto and J. B. Lima, IEEE Trans. Signal Process. 65, 6171 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  31. I. Biatynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975).

    Article  ADS  Google Scholar 

Download references


We thank the organizers and participants of Saratov Fall Meeting 2019.


The work was supported by the grant of the President of the Russian Federation (project MK- 923.2019.2).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. S. Mastiukova, M. A. Gavreev, E. O. Kiktenko or A. K. Fedorov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastiukova, A.S., Gavreev, M.A., Kiktenko, E.O. et al. Tomographic and Entropic Analysis of Modulated Signals. Opt. Spectrosc. 128, 902–908 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: